
1

CSCE 313-200
 Introduction to Computer Systems

 Spring 2025

CSCE CSCE 313313--200200
 Introduction to Computer SystemsIntroduction to Computer Systems

 Spring 2025Spring 2025

Operating SystemsOperating Systems
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

January 21, 2025January 21, 2025

22

Chapter 2: Book OverviewChapter 2: Book OverviewChapter 2: Book Overview

•

Lectures skip chapter 1
━

Mostly 312 background with
some examples

•

Our goal in chapter 2
━

Understand the motivation
 for building an OS

━

Introduce basic terminology
and history

━

Glance over the main
concepts studied later

33

Chapter 2: MotivationChapter 2: MotivationChapter 2: Motivation

•

Early computers (1940-1950s) did
not have an OS

•

Programs (called jobs) were
loaded manually from punch cards
━

Errors were indicated by lights
━

Printer output signaled

successful
completion

•

Three main problems:
━

Scheduling inefficiency
━

Setup delays
━

Hardware awareness

IBM punch card (invented in 1928)

44

Chapter 2: MotivationChapter 2: MotivationChapter 2: Motivation

•

Scheduling inefficiencies
━

Sign-up sheet to reserve computer time
━

Wasted resources if job finishes quicker than reserved time
━

Forced termination and repeated visits if taking too long
•

Setup delays
━

Loading compiler, source code, libraries, input data, and
linking involved mounting tapes and/or card decks

━

If an error occurred, the user had to restart the process
━

Considerable time dedicated to setting up the program to run
•

Hardware awareness
━

Programmer had to write directly into device registers in every
program, keep track of hardware changes

━

Time wasted on largely irrelevant code development

55

Chapter 2: RoadmapChapter 2: RoadmapChapter 2: Roadmap

2.1 OS objectives and functions
2.2 Evolution of the OS
2.3 Major achievements
2.4 Other developments
2.5 Virtual Machines
2.6 Multi-core considerations
2.7 MS Windows
2.6 Traditional UNIX
2.7 Modern UNIX
2.8 Linux

6

Evolution of the OSEvolution of the OSEvolution of the OS
OSOS

Job controlJob control

UserUser

Serial (1940s)Serial (1940s) Simple batch (1955)Simple batch (1955)

Multi-programmed batch (1959)Multi-programmed batch (1959)

Time-sharing (1961)Time-sharing (1961)

Real-time (mid 1960s)Real-time (mid 1960s)

•

Manual job control in
the 1940s was known
as serial processing

•

Extreme inefficiency
and inconvenience
prompted automation
of the process and
development of an OS

•

Main functions
━

Controls the execution
of application programs

━

Provides an interface to
hardware

ApplicationsApplications

Operating systemOperating system

HardwareHardware

user APIs

77

Simple Batch System (1955)Simple Batch System (1955)Simple Batch System (1955)

•

Early computers were
extremely expensive
━

Was important to maximize
processor utilization

•

With an OS present,

user no
longer had direct access to CPU
or devices
━

Instead, submitted jobs into a FIFO
queue that was read and
executed

by a monitor

•

When programs were
done, they returned
control to the monitor

Device driversDevice drivers

Job sequencingJob sequencing

JCL interpreterJCL interpreter

User
program

area

User
program

area

OS = monitor

•

Job Control Language (JCL)
━

Directives how to run the job
(e.g., compiler, input data, job
owner)

88

Simple Batch SystemSimple Batch SystemSimple Batch System

Hardware features
•

Memory protection
━

Jobs with access
violations (e.g., trying to
wipe out the monitor) were
aborted

•

Timer
━

Prevented jobs from
monopolizing system or
infinitely looping

━

Each job had a fixed
deadline by which it had to
finish

•

Privileged instructions
━

Execution allowed only by
the monitor

━

Prevented jobs from
crashing the system or
reading unauthorized data
(e.g., the next job)

━

Monitor controlled all I/O
•

I/O interrupts
━

Were not needed as all I/O
was synchronous

9

Multi-Programmed Batch System (1959)MultiMulti--Programmed Batch System (1959)Programmed Batch System (1959)

•

Even in batched systems, the CPU was often idle
━

Automatic job sequencing helped reduce the delay between
the jobs, but not within them

━

Reason: I/O devices are slow compared to processor
•

Example: a job spends 15 ms reading a record from
the file, then processes it for 1 ms, and finally writes
one record to another file (also 15 ms)
━

What is the CPU utilization?

•

This is often called uni-programming
9

CPUCPU CPUCPUI/O waitI/O wait CPUCPUI/O waitI/O wait

10

Multi-Programmed Batch SystemMultiMulti--Programmed Batch SystemProgrammed Batch System

•

Idea: when one job needs to wait for I/O, the monitor
can switch the CPU to another job
━

Various scheduling algorithms are possible
━

Example below uses strict priority scheduling from A to C

•

Interrupts are now needed for monitor to regain control
•

This is called multi-programming

(or multi-tasking) and

is now the central theme of modern OSes
10

waitwait CPUCPU I/O waitI/O wait CPUCPUB

CPUCPU I/O waitI/O waitA CPUCPU I/O waitI/O wait CPUCPU

waitwait CPUCPU waitwaitC CPUCPU waitwait CPUCPU

1111

ExampleExampleExample

•

At time 0, three jobs are submitted to a monitor in a
system with 250 MB of RAM
━

CPU in table means % of time task is not blocked on I/O
━

Assume jobs never conflict on the same I/O device
•

Uni-programming

•

Multi-programming

Job 1 Job 2 Job 3
CPU 70% 10% 10%
Duration 5 min 15 min 10 min
RAM 50 MB 100 MB 75 MB

70%70% 10%10% 10%10%CPU

20%20% 40%40% 30%30%RAM

90%90% 20%20% 10%10%CPU

90%90% 70%70% 40%40%RAM

10 min15 min5 min

5 min 5 min 5 min

1212

•

Task 1: completion time of last job in uni-programming?
•

Task 2: what is the average CPU and RAM utilization?
━

Metric computed over the entire interval
•

Uni-programming
━

CPU: (70%*5 + 10%*15 + 10%*10)/30 = 20%
━

RAM: (20%*5 + 40%*15 + 30%*10)/30 = 33.3%
•

Task 3: what is the throughput

of the system?

━

Number of jobs finished per time unit (e.g., 1 hour)
•

Task 4: what is the mean response time?
━

Average delay from job submission to its completion
━

Uniprocessing: (5 + 20 + 30)/3 = 18.333 min

ExampleExampleExample
Job 1 Job 2 Job 3

CPU 70% 10% 10%
Duration 5 min 15 min 10 min
RAM 50 MB 100 MB 75 MB

70%70% 10%10% 10%10%

1313

Time Sharing System (1961)Time Sharing System (1961)Time Sharing System (1961)

•

Batch mode favors long
CPU-bound jobs
━

Response time for other tasks
may be minutes or hours

•

Maximizing CPU utilization
does not suit interactive

jobs

━

E.g., a text editor cannot wait 3
hours for its turn

•

Under time-sharing, CPU is
periodically provided to all
jobs not waiting for I/O
━

Goal: minimize response delay

•

Time divided into slices
━

E.g., 200 ms in early
systems, 1-10 ms in
modern OSes

•

The kernel rotates
through all jobs
scheduling them to run
on the CPU

•

Max delay before
getting on the CPU
━

Slice * (number of jobs
 in system –

1)

14

Time Sharing SystemTime Sharing SystemTime Sharing System

•

Comparison

•

Response time of C with 10-ms slices?
•

First time-sharing OS
━

Compatible Time-Sharing System (CTSS), MIT 1961
•

Modern OSes derived from these early concepts

14

waitwait

waitwait

CPUCPUA

CPUCPUB

C

A

B

C

…

1 hour 60 ms

20 ms to
process

keyboard

multi-programmed batch mode time sharing

1515

Real-Time SystemRealReal--Time SystemTime System

•

In regular OSes, job switching delays are random and
depend on the immediate backlog of CPU-bound
tasks and their priority
━

Under worst-case scenarios, a job may not receive its turn
for many slices

•

This presents certain problems in mission-critical
applications
━

E.g., car traction control, helicopter missile-guidance system
•

Real-time OS

(RTOS) provides guarantees on

scheduling and interrupt delays
━

Examples include Windows CE, RTLinux, VxWorks

1616

OS GrowthOS GrowthOS Growth

•

OSes are complex
pieces of software
━

MIT’s CTSS (1961-3):
32,000 machine words

━

IBM’s OS/360 (1964):
1M CPU instructions

━

Multics (1978):
20M CPU instructions

•

Later, software was
measured in source
lines of code

(SLOC)

━

Estimates from Wikipedia:

Year OS SLOC
93 NT 3.1 4M
94 NT 3.5 7M
96 NT 4.0 11M
00 2000 29M
01 XP 45M
03 Server 2003 50M

Year OS SLOC
91 Linux kernel 10K
94 Linux 1.0.0 176K
12 Linux 3.3 kernel 15M
05 MacOS 10.4 86M
07 Debian 4.0 283M
09 Debian 5.0 324M

1717

Chapter 2: RoadmapChapter 2: RoadmapChapter 2: Roadmap

2.1 OS objectives and functions
2.2 Evolution of the OS
2.3 Major achievements
2.4 Other developments
2.5 Virtual Machines
2.6 Multi-core considerations
2.7 MS Windows
2.6 Traditional UNIX
2.7 Modern UNIX
2.8 Linux

1818

Major AchievementsMajor AchievementsMajor Achievements

•

Impossible to deal with OS complexity without certain
systematic ways of managing resources, jobs, and
users

•

Major advances in the development of operating
systems (layout of the book):
━

Processes and threads (ch. 3-4)
━

IPC (inter-process communication) and
synchronization mechanisms (ch. 5-6)

━

File systems (ch. 11-12)
━

Memory (RAM) management (ch. 7-8)
━

Scheduling and resource allocation (ch. 9-10)
━

Information protection and security (ch. 14-15)

covered in
this class

1919

Chapter 2: RoadmapChapter 2: RoadmapChapter 2: Roadmap

2.1 OS objectives and functions
2.2 Evolution of the OS
2.3 Major achievements
2.4 Other developments
2.5 Virtual Machines
2.6 Multi-core considerations
2.7 MS Windows
2.6 Traditional UNIX
2.7 Modern UNIX
2.8 Linux

20

MS WindowsMS WindowsMS Windows

Hardware abstraction layer (hal.dll)Hardware abstraction layer (hal.dll)

Simple kernel (ntoskrnl.exe)Simple kernel (ntoskrnl.exe)

Native API (ntdll.dll)Native API (ntdll.dll)

Win32 API (kernel32.dll,
user32.dll, gdi32.dll)

Win32 API (kernel32.dll,
user32.dll, gdi32.dll)

313313

System servicesSystem servicesKernel system processesKernel system processes
I/O managerI/O manager

Cache managerCache manager

File system
manager

File system
manager

Device driversDevice drivers

Runtime
libraries

Runtime
libraries

Process
and thread
manager

Process
and thread
manager

Object
manager

Object
manager

Virtual
memory
manager

Virtual
memory
manager

Window
manager

Window
manager

GDIGDI

Graphics
drivers

Graphics
drivers

HardwareHardware

Wrappers and frameworks
(MFC, .NET, msvcrt.dll)

Wrappers and frameworks
(MFC, .NET, msvcrt.dll)

these APIs
studied in
homework

Session managerSession manager

WinlogonWinlogon

Security policySecurity policy

Service managerService manager

Svchost.exeSvchost.exe

SpoolerSpooler

ExplorerExplorer

Task managerTask manager

user mode
kernel mode

managed user
processes

managed user
processes

low-level user
processes

low-level user
processes

21

Homework #1Homework #1Homework #1

•

When running A*
━

Incorrect # of nodes if weight is integer in q = L + w / (d+1)
•

Basic BFS and DFS
━

Order of traversal on this graph?

AA

CC

BB

DD

FF

EE

GG Adjacency list
A: E, D, B
B: A, G
C: E, D, F
D: A, C
E: A, C
F: C, G
G: B, F

Adjacency list
A: E, D, B
B: A, G
C: E, D, F
D: A, C
E: A, C
F: C, G
G: B, F

q = L + (float)w

/ (d+1)

2222

Homework #1Homework #1Homework #1

•

Refresh the concept of search
━

Assume an undirected graph G = (V,E)
━

Start node sV
•

Maintain two structures
━

Unexplored set U
━

Discovered set D
•

Approach #1:
U.add (s)
while (U.notEmpty ())

x = U.removeNextNode () // node to explore
if (D.find(x) == true) // if already explored, ignore

continue
N = G.getNeighbors (x) // N is a set of nodes
if (N.size() == 0) break // exit?
for each y in N

U.add (y)

U.add (s)
while (U.notEmpty ())

x = U.removeNextNode () // node to explore
if (D.find(x) == true) // if already explored, ignore

continue
N = G.getNeighbors (x) // N is a set of nodes
if (N.size() == 0) break // exit?
for each y in N

U.add (y) Any problems?

2323

Homework #1Homework #1Homework #1

•

This code fails to actually insert anything into D
•

Correct version:

•

Requires huge storage as each node may be pushed
into U as many times as there are links to it
━

Not advisable in practice

U.add (s)
while (U.notEmpty ())

x = U.removeNextNode ()
if (D.find(x) == true) // if already explored, ignore

continue
D.add (x)
N = G.getNeighbors (x)
if (N.size() == 0) break // exit?
for each y in N

U.add (y)

U.add (s)
while (U.notEmpty ())

x = U.removeNextNode ()
if (D.find(x) == true) // if already explored, ignore

continue
D.add (x)
N = G.getNeighbors (x)
if (N.size() == 0) break // exit?
for each y in N

U.add (y) Any drawbacks?

2424

Homework #1Homework #1Homework #1

•

Approach #2 inserts a single copy of each node in U:

•

For most types of non-trivial exploration, approach #2
is far superior to #1

•

What if D has a function that combines find/add?
━

Can directly use STL set’s insert() function

U.add (s); D.add (s); // s = source node
while (U.notEmpty ())

x = U.removeNextNode ()
N = G.getNeighbors (x)
if (N.size() == 0) break // exit?
for each y in N

if (D.find (y) == false) // has been pushed in U?
U.add (y)
D.add (y)

U.add (s); D.add (s); // s = source node
while (U.notEmpty ())

x = U.removeNextNode ()
N = G.getNeighbors (x)
if (N.size() == 0) break // exit?
for each y in N

if (D.find (y) == false) // has been pushed in U?
U.add (y)
D.add (y) Always use this version!

2525

Homework #1Homework #1Homework #1

•

When you find the exit, how far is it from s?
•

Idea: make U keep track of tuples

(nodeID, distance)

•

Note that U.add() also needs light intensity for bFS/A*
━

See the handout for details

U.add (s, 0); D.add (s);
while (U.notEmpty ())

t = U.removeNextTuple () // t is a tuple
N = G.getNeighbors (t.ID)
if (N.size() == 0)

printf (“Found at distance %d\n”, t.distance)
break

for each y in N
if (D.find (y) == false) // new node?

U.add (y, t.distance + 1)
D.add (y)

U.add (s, 0); D.add (s);
while (U.notEmpty ())

t = U.removeNextTuple () // t is a tuple
N = G.getNeighbors (t.ID)
if (N.size() == 0)

printf (“Found at distance %d\n”, t.distance)
break

for each y in N
if (D.find (y) == false) // new node?

U.add (y, t.distance + 1)
D.add (y)

2626

Homework #1Homework #1Homework #1

•

Reusing the search algorithm
━

Create a base class

━

Inherit four classes

━

Create base pointer to
a specific class, then

 send it to search()

class Ubase {
virtual void Add (uint64 ID, int distance, float intensity) = 0;
virtual UnexploredRoom RemoveNextTuple (void) = 0;
...

}

class Ubase {
virtual void Add (uint64 ID, int distance, float intensity) = 0;
virtual UnexploredRoom RemoveNextTuple (void) = 0;
...

}

class Ubreadth : public Ubase {
// implement a queue here

}
class Udepth : public Ubase {

// implement a stack here
}
...

class Ubreadth : public Ubase {
// implement a queue here

}
class Udepth : public Ubase {

// implement a stack here
}
...

Search (Ubase *U)
{

while (U->size() > 0)
...

}

Search (Ubase *U)
{

while (U->size() > 0)
...

}

Ubase *ptr;
if (searchType == BFS)

ptr = new Ubreadth;
else if ...

Search (ptr);

Ubase *ptr;
if (searchType == BFS)

ptr = new Ubreadth;
else if ...

Search (ptr);

	CSCE 313-200�Introduction to Computer Systems�Spring 2025
	Chapter 2: Book Overview
	Chapter 2: Motivation
	Chapter 2: Motivation
	Chapter 2: Roadmap
	Evolution of the OS
	Simple Batch System (1955)
	Simple Batch System
	Multi-Programmed Batch System (1959)
	Multi-Programmed Batch System
	Example
	Example
	Time Sharing System (1961)
	Time Sharing System
	Real-Time System
	OS Growth
	Chapter 2: Roadmap
	Major Achievements
	Chapter 2: Roadmap
	MS Windows
	Homework #1
	Homework #1
	Homework #1
	Homework #1
	Homework #1
	Homework #1

