CSCE 313-200

Introduction to Computer Systems
Spring 2025

Processes

Dmitri Loguinov
Texas A&M University

January 23, 2025

Chapter 3: Roadmap

m) 3.1 What is a process? Part I
3.2 Process states Chapter 3: Processes
3.3 Process description
3.4 Process control
3.5 Execution of the OS
3.6 Security issues
3.7 Unix process management

1940 1961

P uniprogramming | multi-programming time-sharing
OCESSEeS 4

>4
jobs processes

 From the 1960s, jobs were described by a special data
structure that allowed the OS to systematically monitor,
control, and synchronize them

* This became known as a process, which consists of:

- Program in execution machine instructions
- Data Program code global and static vars,
- Stack Data || constants, heap

- Process Control Stack B local vars, function

parameters, return
Block (PCB) ? addresses
* Note that programs auxiliary info to

stored on disk do not become manage process
processes until they are started

Processes

* Processes with shared memory

- |f shared memory is created by a process, it can be
accessed in other processes in the system

- This is called memory mapping

- Just like named pipes, shared memory in Windows is
addressable using some unique name

process, process,

Shared memory

Chapter 3: Roadmap

3.1 What Is a process?
mm) 3.2 Process states
3.3 Process description
3.4 Process control
3.5 Execution of the OS
3.6 Security issues
3.7 Unix process management

Process States

* Process trace

- Offsets (i.e., relative addresses) of
Instructions executed by a process

e CPU trace

- Sequence of absolute addresses
executed by the CPU

- Suppose OS allows 6 CPU
Instructions in a slice, needs 3 to
perform a process switch

N = O[>

503
504
505
506
507
108
109
110
111

WN—=O|I

RAM

900
901
902
903
904
900
901
902
903
904
900

100

5000

6000

6

Process States

* This brings us to the issue of how the OS keeps track
of processes and what runs next

« Simple 2-state model:

new dispatch

* Implementation:

dispatch

new T 1T 1 > CPU | exit
single queue

pause

Program code

Process States Data

rocess image ¢
> : Stack

PCB

* Process creation in 2-state model \
- OS creates a PCB, loads necessary code and data in RAM,
and moves process to the Not Running state
* Possible reasons for creation
- Ready for next job in batch mode (old supercomputers)
- User demand (command-line, login-related)
- Needed by OS to serve a request
- Explicitly spawned by a user program (e.g., CC.exe in hw #1)

* Original process is parent, spawned process child

- Child may inherit access to certain open handles

- Parent usually has full access rights to control the child (e.g.,
set its priority/affinity or terminate it)

Process States

* Process termination « Stealthy crashes
- Normal completion - Severe stack corruption may
- User request (e.g., Ctrl-C) cause program to quit
- Request from another without any warning or error
process « |f code crashes in Release
- Access violation mode, will it crash in
- Arithmetic error (division Debug?
by zero) - Not necessarily
= Invalid instruction - Some bugs can be seen only
- Privileged instruction In release mode
- Not enough RAM - Reasons?

(bad_alloc exception) - What about vice versa?

Process States

* Notice that 2-state model has no simple way of
selecting the next ready process
- Some might be blocked on I/O or events

 Next version, called 5-state model, solves this:

term'\“a‘e

dispatch

short-term
scheduler

long-term
scheduler

pause

®
yA
7-state model: suspends %/
blocked processes to disk; N
: Q
medium-term scheduler %

activates them back to RAM terminate

10

Process States

* Process creation in 5-state model
- When the OS creates a PCB, it moves the process to New
- However, data/code may still be on disk

* Given enough RAM, process is admitted to Ready
- Code/data is loaded (fully or partially depending on whether
virtual memory is available)
* Upon termination
- Process memory is released, PCB is moved to the Exit state

- May be beneficial to retain some PCB information (e.g.,
process exit code, PID, process handle)

- Queries about a terminated process can be resolved using
the PCB in the Exit state

11

Process States

e Common transitions

- Ready = Running: scheduler decides based on its policy
(e.g., round-robin, strict priority, weighted round-robin)

- Running-> Ready: either 1) time slice is over or 2) pre-
empted by a higher-priority process in the Ready state

- Running - Blocked: one of three options: process 1)
voluntarily sleeping; 2) waiting for other processes (i.e., IPC);
3) waiting for /O devices

- Blocked - Ready: event signaled
- Running - Exit: quits normally, crashes, or forced to quit

« Rarer cases

- Ready - Exit, New—>Exit, or Blocked - EXxit: forced

termination by user, OS, or another process
12

Process States

* Implementing 5-state model

- Single blocked queue

terrn /'73[@

dispatch

release)
Exit

dispatch _
new ——o—»o T T T 1 — _,—> exit
ready queue
pause
event occurs LLL L] event wait
blocked queue
- Multiple blocked queues
dispatch _
new ——9——»0 T T[]] _,—> exit
ready queue
& pause
e[TT T
O event, wait
= blocked queue,
q') [N
Sl o[TTT]
eventy wait

blocked queue

13

Implementation Notes

« By default, I/O requests are blocking

Non-blocking (asynchronous): APls return control to the
process regardless of whether data is ready or not

 How to know when async requests are finished

Polling: the process must periodically check on the status of
the pending operation (Unix, Windows)

Event-driven: the APl works with a special event handle that
gets signaled when the operation is finished (Windows)

Callback: OS calls a specific function in the process upon
event (GUI applications such as MFC)

Overlapped: asynchronous model that allows multiple
requests to be pending to the same |/O handle

/O Completion Ports (IOCP): OS send notifications into a
shared queue that the process can read (Windows) 14

Chapter 3: Roadmap

3.1 What Is a process?
3.2 Process states
Iﬂ3.3 Process description
3.4 Process control
3.5 Execution of the OS
3.6 Security issues
3.7 Unix process management

15

Process Description - PID

Parent PID (PPID)

User ID (owner)

 Process Control Block o8
lit int 3 | rt 1) ldentification —
Sp It 1INto genera pa S 2) CPU state | — User registers
1) Identification 3) Process control Control registers
Stack pointers

- Process ID (PID)

- PPID sometimes needed
to verify inherited rights

- User/group IDs

 Context switch entails

- Storing all CPU/FPU
reqgisters into PCB of

¢ 2) CPU State |S Used dunng running process
context (process) switches - Deciding which process
- User-modified registers (30-100 to run next
depending on the architecture) - Loading registers from
- Control registers (e.g., PC, flags) context of that process

- Various stack pointers 16

Process Description

3) Process control information

* Scheduling PCB
- Process state (e.g., ready, | 1)ldentification
running, blocked) 2) CPU state
- Priority class 3) Process control —

- Info that helps scheduler (e.g.,
current wait time, estimated

completion time, past CPU usage) =

Scheduling

- Events (if any) currently preventing

Queues

the process from being ready

* Queues

- Various wait queues the process Is
part of (e.g., scheduler, device |/O)

17

Process Description .

1) ldentification

 Inter-process 2) CPU state

communication (IPC) 3) Process control

- Message-passing handles and data
(e.g., pipes, mailslots)

- Shared memory handles/pointers

- Synchronization objects (e.g., mutex)
* Privileges

- Various system permissions

* Allocated memory

- Virtual memory used by process including
pages in pagefile

 Resource usage
- Other open handles and various accounting

Scheduling

Queues

IPC

Privileges

Allocated memory

Resource usage

18

Chapter 3: Roadmap

3.1 What Is a process?
3.2 Process states
3.3 Process description
W) 3.4 Process control
3.5 Execution of the OS
3.6 Security issues
3.7 Unix process management

19

Execution Modes

 CPU provides at least 2 execution modes

- User mode prohibits all I/O instructions, virtual table
manipulation, access to blocks of RAM not owned by
process, and modification of certain registers

- Kernel mode has no restrictions
« Some architectures allow more than 2 modes

- These are often called protection rings

- More granularity to allow “intermediate” privileges to certain
processes (e.g., printer driver should be able to perform /O,
but not modify virtual-memory tables)

 Intel/AMD CPUs support 4 execution levels
- Some older supercomputers had 8

20

high privilege
drivers (ring™)

Execution Modes

« Consider a hypothetical
4-ring system: |
: kernel
- Ring 3 always user mode (ying 0
- Ring 0 always kernel -
- Rings 1 and 2 depend on S s
the implementation
* Windows and Linux support only rings 0 and 3

- Partly because other architectures these can run on (e.g.,
PowerPC and MIPS) traditionally had only 2 modes

- Partly to reduce complexity

* Main drawback of 2-level systems
- Any driver crash bluescreens the system and forces a reboot

21

low privilege
drivers (ring 2)

Execution Modes

hypervisor
(ring 0)
* Microsoft virtualization ’\
guest OS
server (Hyper-V) is an \ \ (ring 1)
exception '
- Virtual machines (VM) allow
multiple guest OSes to run ”(r’ltngszed
transparently on the CPU
* Guest OSes are managed by e e
the virtual machine monitor (ring 3)

(VMM) called hypervisor

- In contrast to normal kernels that are called supervisors

* Hypervisor runs in ring 0, guest OS in ring 1

- AMD-V was supported starting with Athlon 64 (2006) and
Intel VT-x starting with Pentium 4 (2005) ’

Mode Switch

« CPU support for changing execution mode

- On some architectures special register called Program Status
Word (PSW) tracks current mode

* On Intel, protection is scattered across many registers
- CPL (current privilege level): 2 bits in CS (code segment) reg
- DPL (data privilege level): 2 bits in virtual table of the segment
- |OPL (I/O privilege level): 2 bits in EFLAGS register

virtual 8086 I/O privilege interrupt trap after each instruction

| | | |
ID [VIP| VIF (gAXe3 VM| RF |§¢ OP OF | D TF 0 |AF 0 | P
CPU alignment resume T direction sign zero adjust parity carry
ID check task overflow

* |/O requires CPL < |OPL; data access CPL < DPL

23

Mode Switch

« Upon interrupt or kernel call (syscall)
- CPL clearedto O

- OlId values of registers are stored in stack (and later in PCB
if a context switch occurs)

- Execution passed to kernel address
- Interrupt return (iret) causes old values to be restored

* Violations of current execution mode must be
supported by the CPU

- Throws a general protection fault if it detects attempts to
circumvent kernel defenses (e.g., read/write or execute parts
of memory with insufficient CPL, modify certain flags,
execute I/O instructions, exceed allocated segment size)

- OS intercepts these interrupts and terminates the process
24

Context (Process) Switch

* OS can switch « CPU Traps
processes whenever it — Invalid instructions
gains control — Protection violations

e \When does the OS - Memory faults (e.g., virtual
actually execute? page not in RAM)

- Arithmetic errors

« System calls
- Kernel-level APIls invoked
by user process
* Kernel may return control
to current process, let it
continue

 Three main instances:
- External interrupt
- CPU exception/fault/trap
- System call

* |nterrupts
- Timer (e.g., slice over)
- 1/O (e.g., device ready)

25

Context (Process) Switch

* In fact, most non-timer ¢ Process switch typically

Interrupts do not switch occurs only when either:

processes - Time slice expires or

- Short routines record process blocks on API
interrupt conditions, reset « Note that process switch
the device, and return to requires mode switch, but

user mode quickly

- Later, other parts of the
kernel (e.g., svchost.exe)

not vice versal
- Q: Which of the two is more

perform full handling of eXpensive?
the interrupt * A: Process switch

- Implemented via Deferred - Transition to kernel mode,
Procedure Calls (DPC) in selection of task to run,

Windows saving/restoring registers y

Chapter 3: Roadmap

3.1 What Is a process?
3.2 Process states
3.3 Process description
3.4 Process control
mm) 3.5 Execution of the OS
3.6 Security issues
3.7 Unix process management

27

process

JAYoJolll user function

Execution of the OS =
AP

* Three ways to execute calls to OS

' user mode

——

scheduler

kernel mode scheduler
APl executes in kernel APl executes in kernel API| executes as
outside any process mode as part of process separate user process
2 user-OS context switches 2 mode switches 2 process context switches
and 2 mode switches and 4 mode switches
old monolithic Unix Windows/Linux micro-kernels

28

Execution of the OS

 Method A Method B
- Scheduler cannot interrupt - Fastest switch to APls, but
the APl when its running less secure and more
— 2 extra context switches per complex to develop
call compared to method B - APIs must be re-entrant
e Method C (micro-kernels) - Kernel attaches its own

stack to each process image

process image

- High switching overhead,
but allows rapid user-mode

API development Data
— Better security as untrusted Program code
components (e.g., drivers) User stack
run in user mode PCB
- Certain high-security (e.g., Kernel stack
military) applications Shared memory 29

	CSCE 313-200�Introduction to Computer Systems�Spring 2025
	Chapter 3: Roadmap
	Processes
	Processes
	Chapter 3: Roadmap
	Process States
	Process States
	Process States
	Process States
	Process States
	Process States
	Process States
	Process States
	Implementation Notes
	Chapter 3: Roadmap
	Process Description
	Process Description
	Process Description
	Chapter 3: Roadmap
	Execution Modes
	Execution Modes
	Execution Modes
	Mode Switch
	Mode Switch
	Context (Process) Switch
	Context (Process) Switch
	Chapter 3: Roadmap
	Execution of the OS
	Execution of the OS

