
1

CSCE 313-200
 Introduction to Computer Systems

 Spring 2025
 

CSCE CSCE 313313--200200
 Introduction to Computer SystemsIntroduction to Computer Systems

 Spring 2025Spring 2025

ProcessesProcesses
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

January 23, 2025January 23, 2025



2

Chapter 3: RoadmapChapter 3: RoadmapChapter 3: Roadmap

3.1 What is a process?
3.2 Process states
3.3 Process description
3.4 Process control
3.5 Execution of the OS
3.6 Security issues
3.7 Unix process management

Part II
Chapter 3: ProcessesChapter 3: Processes
Chapter 4: ThreadsChapter 4: Threads

Chapter 5: ConcurrencyChapter 5: Concurrency
Chapter 6: DeadlocksChapter 6: Deadlocks



3

•
 

From the 1960s, jobs were described by a special data 
structure

 
that allowed the OS to systematically monitor, 

control, and synchronize them
•

 
This became known as a process, which consists of:
━

 

Program in execution
━

 

Data
━

 

Stack
━

 

Process Control 
Block (PCB)

•
 

Note that programs 
stored on disk do not become 
processes until they are started

3

ProcessesProcessesProcesses uniprogramminguniprogramming multi-programmingmulti-programming

jobs processes

time-sharingtime-sharing

1940 1961

DataData
global and static vars, 
constants, heap

Program codeProgram code
machine instructions

StackStack local vars, function 
parameters, return 
addresses PCBPCB

auxiliary info to 
manage process



4

ProcessesProcessesProcesses

•
 

Processes with shared memory
━

 

If shared memory is created by a process, it can be 
accessed in other processes in the system

━

 

This is called memory mapping
━

 

Just like named pipes, shared memory in Windows is 
addressable using some unique name

Program code1

 

Program code1

Data1

 

Data1

Stack1

 

Stack1

PCB1

 

PCB1

process1

Program code2

 

Program code2

Data2

 

Data2

Stack2

 

Stack2

PCB2

 

PCB2

process2

Shared memoryShared memory



5

Chapter 3: RoadmapChapter 3: RoadmapChapter 3: Roadmap

3.1 What is a process?
3.2 Process states
3.3 Process description
3.4 Process control
3.5 Execution of the OS
3.6 Security issues
3.7 Unix process management



6

Process StatesProcess StatesProcess States
•

 
Process trace
━

 

Offsets
 

(i.e., relative addresses) of 
instructions executed

 
by a process

•
 

CPU trace
━

 

Sequence of absolute addresses 
executed by the

 
CPU

━

 

Suppose OS
 

allows
 

6 CPU 
instructions in a

 
slice, needs 3 to 

perform a process switch

A

 
0

 
1
2

503
504
505
506
507
108
109
110
111

A

 
0
1
2

503
504
505
506
507
108
109
110
111

B

 
0

 
1
2
3

B

 
0
1
2
3

C

 
0

 
900
901
902
903
904
900
901
902
903
904
900

C

 
0

900
901
902
903
904
900
901
902
903
904
900

5000

9000

6000

CPU
5000
5001
5002
5503
5504
5505

CPU
5000
5001
5002
5503
5504
5505

100
101
102

6000
6001
6002

100
101
102

6000
6001
6002

100

6003
100
101
102

9000
9900

6003
100
101
102

9000
9900

9901
9902
9903
9904
100
101

9901
9902
9903
9904
100
101

102
5506
5507
5108
5109
5110

102
5506
5507
5108
5109
5110

132

OSOS

AA

BB

CC

RAM



7

Process StatesProcess StatesProcess States

•
 

This brings us to the issue of how the OS
 

keeps track 
of processes and what runs next

•
 

Simple 2-state model:

•
 

Implementation:

RunningNot 
running

single queue
CPUCPU

dispatch
exitnew

pause

dispatch

pause

new

exit



8

Process StatesProcess StatesProcess States

•
 

Process creation in 2-state model
━

 

OS creates a PCB, loads necessary code and data in RAM, 
and moves process to the Not Running state

•
 

Possible reasons for creation
━

 

Ready for next job in batch mode (old supercomputers)
━

 

User
 

demand
 

(command-line, login-related)
━

 

Needed by OS to serve a request
━

 

Explicitly spawned by a user program (e.g., CC.exe in hw
 

#1)
•

 
Original process is parent, spawned process child
━

 

Child may inherit access to certain open handles 
━

 

Parent
 

usually has full access rights to control the child (e.g., 
set its priority/affinity or terminate it)

DataData
Program codeProgram code

StackStack

PCBPCB

process image



9

Process StatesProcess StatesProcess States

•
 

Process termination
━

 

Normal completion 
━

 

User request (e.g., Ctrl-C)
━

 

Request from another 
process

━

 

Access
 

violation 
━

 

Arithmetic error (division 
by zero)

━

 

Invalid instruction
━

 

Privileged instruction
━

 

Not
 

enough RAM 
(bad_alloc exception)

•
 

Stealthy crashes
━

 

Severe stack corruption may 
cause program to quit 
without any warning or error

•
 

If code crashes in Release 
mode, will it crash in 
Debug?
━

 

Not necessarily
━

 

Some bugs can be seen only 
in release mode

━

 

Reasons?
•

 
What about vice versa?



10

Process StatesProcess StatesProcess States

•
 

Notice that 2-state model has no simple way of 
selecting the next ready process
━

 

Some might be blocked on I/O or events
•

 
Next version, called 5-state model, solves this:

RunningNot 
Running

dispatch

pause

new

exit

RunningReady

Blocked

dispatch

ev
en

t w
ait

terminate

pause

event occurs

admitNew Exit
quit/terminate

terminate

long-term 
scheduler

short-term 
scheduler

terminate

7-state model: suspends 
blocked processes to disk; 

medium-term scheduler 
activates them back to RAM



11

Process StatesProcess StatesProcess States

•
 

Process creation in 5-state model
━

 

When the OS creates a PCB, it moves the process to New
━

 

However, data/code may still be on disk
•

 
Given enough

 
RAM, process is admitted to Ready

━

 

Code/data is loaded (fully or partially depending on whether 
virtual memory is available)

•
 

Upon termination
━

 

Process memory is released, PCB is moved to the Exit state
━

 

May be beneficial to retain some
 

PCB information
 

(e.g., 
process exit code, PID, process handle)

━

 

Queries about a
 

terminated process can be resolved using 
the PCB in the Exit state



12

Process StatesProcess StatesProcess States

•
 

Common transitions
━

 

Ready  Running: scheduler decides based on its policy 
(e.g., round-robin, strict priority, weighted

 
round-robin)

━

 

Running Ready: either 1) time slice is over or 2) pre-
 empted by a higher-priority process in the Ready state

━

 

Running  Blocked: one of three options: process 1) 
voluntarily sleeping; 2) waiting for other processes (i.e., IPC); 
3) waiting for I/O devices

━

 

Blocked  Ready: event signaled
━

 

Running  Exit: quits normally, crashes, or forced to quit
•

 
Rarer

 
cases

━

 

Ready  Exit, NewExit, or
 

Blocked
 

 Exit: forced 
termination by user, OS, or another process

RunningReady

Blocked

dispatch

ev
en

t w
ait

terminate

pauseevent occurs

admitNew
Exit

release

terminate



13

Process StatesProcess StatesProcess States

•
 

Implementing 5-state model
━

 

Single blocked queue

━

 

Multiple blocked queues

ready queue CPUCPU

dispatch
exitnew

pause

event waitevent occurs blocked queue

ready queue CPUCPU

dispatch
exitnew

pause

event1

 

wait

ev
en

t o
cc

ur
s

blocked queue1

eventN

 

waitblocked queueN

…

RunningReady

Blocked

dispatch

ev
en

t w
ait

terminate

pauseevent occurs

admitNew
Exit

release

terminate



14

Implementation NotesImplementation NotesImplementation Notes

•
 

By default, I/O
 

requests are blocking
━

 

Non-blocking (asynchronous):
 

APIs
 

return control
 

to
 

the 
process regardless of whether data

 
is ready or not

•
 

How to know when async requests are finished
━

 

Polling: the process must periodically check on the status of 
the pending operation (Unix, Windows)

━

 

Event-driven: the API works with a special event handle
 

that 
gets signaled when the operation is finished (Windows)

━

 

Callback: OS calls a specific function in the process upon 
event (GUI applications such as MFC)

━

 

Overlapped: asynchronous model that allows multiple 
requests to be pending to the same I/O handle

━

 

I/O Completion Ports (IOCP): OS send notifications into a 
shared queue that the process can read (Windows)



15

Chapter 3: RoadmapChapter 3: RoadmapChapter 3: Roadmap

3.1 What is a process?
3.2 Process states
3.3 Process description
3.4 Process control
3.5 Execution of the OS
3.6 Security issues
3.7 Unix process management



16

Process DescriptionProcess DescriptionProcess Description

•
 

Process Control Block 
split into 3 general parts

•
 

1) Identification
━

 

Process ID (PID)
━

 

PPID sometimes needed 
to verify inherited rights

━

 

User/group IDs
•

 
2) CPU state

 
is used during 

context (process) switches
━

 

User-modified registers (30-100 
depending on the architecture)

━

 

Control registers (e.g., PC, flags)
━

 

Various stack pointers

1) Identification1) Identification

2) CPU

 

state2) CPU

 

state

3) Process

 

control3) Process

 

control

PCB

PIDPID

Parent PID (PPID)Parent PID (PPID)

User ID (owner)User ID (owner)

User registersUser registers

Control registersControl registers

Stack pointersStack pointers

•
 

Context switch entails
━

 

Storing all CPU/FPU 
registers into PCB of 
running process

━

 

Deciding which process 
to run next

━

 

Loading registers from 
context of that process



17

Process DescriptionProcess DescriptionProcess Description

3) Process control information
•

 
Scheduling
━

 

Process state (e.g., ready, 
running, blocked)

━

 

Priority class
━

 

Info that helps scheduler (e.g., 
current wait time, estimated 
completion time, past CPU usage)

━

 

Events (if any) currently preventing 
the process from being ready

•
 

Queues
━

 

Various wait queues the process is 
part of (e.g., scheduler, device I/O)

1) Identification1) Identification

2) CPU

 

state2) CPU

 

state

3) Process

 

control3) Process

 

control

PCB

SchedulingScheduling

QueuesQueues



18

Process DescriptionProcess DescriptionProcess Description

•
 

Inter-process 
communication (IPC)
━

 

Message-passing handles and data 
(e.g., pipes, mailslots)

━

 

Shared memory handles/pointers
━

 

Synchronization objects (e.g., mutex)
•

 
Privileges
━

 

Various system permissions
•

 
Allocated memory
━

 

Virtual memory used by process including 
pages in pagefile

•
 

Resource usage
━

 

Other open handles and various accounting

1) Identification1) Identification

2) CPU

 

state2) CPU

 

state

3) Process

 

control3) Process

 

control

PCB

SchedulingScheduling

QueuesQueues

IPCIPC

PrivilegesPrivileges

Allocated memoryAllocated memory

Resource usageResource usage



19

Chapter 3: RoadmapChapter 3: RoadmapChapter 3: Roadmap

3.1 What is a process?
3.2 Process states
3.3 Process description
3.4 Process control
3.5 Execution of the OS
3.6 Security issues
3.7 Unix process management



20

Execution ModesExecution ModesExecution Modes

•
 

CPU provides at least 2 execution modes
━

 

User mode
 

prohibits all I/O instructions, virtual table 
manipulation, access to blocks of RAM not owned by 
process, and modification of certain registers

━

 

Kernel mode
 

has no restrictions
•

 
Some architectures allow more than 2 modes
━

 

These are often called protection rings
━

 

More granularity to allow “intermediate”
 

privileges to certain 
processes (e.g., printer driver should be able to perform I/O, 
but not modify virtual-memory tables)

•
 

Intel/AMD CPUs support 4 execution levels
━

 

Some older supercomputers had 8



21

Execution ModesExecution ModesExecution Modes

•
 

Consider a hypothetical 
4-ring system:
━

 

Ring 3 always user mode
━

 

Ring 0 always kernel
━

 

Rings 1 and 2 depend on 
the implementation

•
 

Windows and Linux support only rings 0 and 3
━

 

Partly because other architectures these can run on (e.g., 
PowerPC and MIPS) traditionally had only 2 modes

━

 

Partly to reduce complexity
•

 
Main drawback of 2-level systems
━

 

Any driver crash bluescreens the system and forces a reboot

user applications 
(ring 3)

low privilege 
drivers (ring 2)

high privilege 
drivers (ring 1)

kernel 
(ring 0)



22

Execution ModesExecution ModesExecution Modes

•
 

Microsoft virtualization 
server (Hyper-V) is an 
exception
━

 

Virtual machines (VM) allow
 multiple guest OSes to run

 transparently on the CPU
•

 
Guest

 
OSes are managed by 

the virtual machine monitor 
(VMM) called hypervisor
━

 

In contrast to normal kernels that are called supervisors
•

 
Hypervisor runs in ring 0, guest OS in ring 1
━

 

AMD-V was supported starting with Athlon 64 (2006) and 
Intel VT-x starting with Pentium 4 (2005)

user applications 
(ring 3)

not used 
(ring 2)

guest OS 
(ring 1)

hypervisor 
(ring 0)



23

Mode SwitchMode SwitchMode Switch

•
 

CPU support for changing execution mode 
━

 

On some architectures special register called Program Status 
Word

 
(PSW) tracks current mode

•
 

On Intel, protection is scattered across many registers
━

 

CPL (current privilege level): 2 bits in CS (code segment) reg
━

 

DPL (data privilege level): 2 bits in virtual table of the segment
━

 

IOPL (I/O privilege level): 2 bits in EFLAGS register

•
 

I/O requires CPL ·
 

IOPL; data access CPL ·
 

DPL

CFCF11PFPFAFAF 00ZFZF 00SFSFTFTFIFIFDFDFOFOFIOPLIOPLNTNT00RFRFVMVMACACVIFVIFVIPVIPIDID

carryparityadjustzerosign

trap after each instructioninterrupt

direction

overflow

I/O privilege

nested 
task

alignment 
check

resumeCPU 
ID

virtual 8086



24

Mode SwitchMode SwitchMode Switch

•
 

Upon interrupt or kernel call (syscall)
━

 

CPL cleared to 0 
━

 

Old
 

values of registers are stored in stack (and later in PCB 
if a context

 
switch occurs)

━

 

Execution passed to kernel address
━

 

Interrupt return (iret) causes old values to be restored
•

 
Violations of current execution mode must be 
supported by the CPU
━

 

Throws a general protection fault
 

if it detects attempts to 
circumvent kernel defenses (e.g., read/write or execute parts 
of memory with insufficient CPL, modify certain flags, 
execute I/O instructions, exceed allocated segment size)

━

 

OS intercepts these interrupts and terminates the process



25

Context (Process) SwitchContext (Process) SwitchContext (Process) Switch

•
 

OS can switch 
processes whenever it 
gains control

•
 

When does the OS 
actually execute?

•
 

Three main instances:
━

 

External interrupt
━

 

CPU exception/fault/trap
━

 

System call
•

 
Interrupts
━

 

Timer (e.g., slice over)
━

 

I/O (e.g., device ready)

•
 

CPU Traps
━

 

Invalid instructions
━

 

Protection violations
━

 

Memory faults (e.g., virtual 
page not in RAM)

━

 

Arithmetic errors
•

 
System calls
━

 

Kernel-level APIs invoked 
by user process

•
 

Kernel may return control 
to current process, let it 
continue



26

Context (Process) SwitchContext (Process) SwitchContext (Process) Switch

•
 

In fact, most non-timer 
interrupts do not switch 
processes
━

 

Short routines record 
interrupt conditions, reset 
the device, and return to 
user mode quickly

━

 

Later, other parts of the 
kernel (e.g., svchost.exe) 
perform full handling of 
the interrupt 

━

 

Implemented via Deferred 
Procedure Calls

 
(DPC) in 

Windows

•
 

Process switch typically 
occurs only when either:
━

 

Time slice expires or 
process blocks on API

•
 

Note that process switch 
requires mode switch, but 
not vice versa!
━

 

Q: Which of the two is more 
expensive?

•
 

A: Process switch
━

 

Transition to kernel mode, 
selection of task to run, 
saving/restoring registers



27

Chapter 3: RoadmapChapter 3: RoadmapChapter 3: Roadmap

3.1 What is a process?
3.2 Process states
3.3 Process description
3.4 Process control
3.5 Execution of the OS
3.6 Security issues
3.7 Unix process management



28

•
 

Three ways to execute calls to OS

Execution of the OSExecution of the OSExecution of the OS

2 mode switches2 user-OS context

 

switches 
and

 

2 mode switches
2 process context

 

switches 
and

 

4

 

mode switches

Windows/Linuxold monolithic Unix micro-kernels

process

AppApp user function

APIAPI OS API

FF
user mode

kernel mode

schedulerscheduler APIAPI

API executes in kernel 
outside any process

A

FF

schedulerscheduler

APIAPI

API executes in kernel 
mode as part of process

B

FF

schedulerscheduler

APIAPI

API executes as 
separate user process

C



29

Execution of the OSExecution of the OSExecution of the OS

•
 

Method A
━

 

Scheduler cannot interrupt 
the API when its running

━

 

2 extra context switches per 
call compared to method B

•
 

Method C (micro-kernels)
━

 

High switching overhead, 
but allows rapid user-mode 
API development

━

 

Better security as untrusted 
components (e.g., drivers) 
run in user mode

━

 

Certain high-security (e.g., 
military) applications

•
 

Method B
━

 

Fastest switch to APIs, but 
less secure and more 
complex to develop

━

 

APIs must be re-entrant
━

 

Kernel attaches its own 
stack to each process image

DataData

Program codeProgram code

User stackUser stack

PCBPCB

process image

Kernel stackKernel stack

Shared memoryShared memory


	CSCE 313-200�Introduction to Computer Systems�Spring 2025
	Chapter 3: Roadmap
	Processes
	Processes
	Chapter 3: Roadmap
	Process States
	Process States
	Process States
	Process States
	Process States
	Process States
	Process States
	Process States
	Implementation Notes
	Chapter 3: Roadmap
	Process Description
	Process Description
	Process Description
	Chapter 3: Roadmap
	Execution Modes
	Execution Modes
	Execution Modes
	Mode Switch
	Mode Switch
	Context (Process) Switch
	Context (Process) Switch
	Chapter 3: Roadmap
	Execution of the OS
	Execution of the OS

