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UpdatesUpdatesUpdates

•
 

Quiz
 

on Thursday
━

 

System Programming Tutorial (pay attention to exercises)
━

 

Pointers, VS debugging tools/strategies, APIs
━

 

Common Microsoft data types
━

 

The last two lectures (OS concepts, processes)
•

 
Common issues in hw1p1
━

 

Not waiting for CC.exe to exit
━

 

Printing room with %X instead of %llX
━

 

Not handling CC errors in ResponseCC::status
•

 
Make sure to check

 
for API errors

━

 

Catches
 

bugs sooner, simplifies debugging
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Chapter 4: RoadmapChapter 4: RoadmapChapter 4: Roadmap

4.1 Processes and threads
4.2 SMP
4.3 Micro-kernels
4.4 Windows threads
4.5 Solaris threads
4.6 Linux threads

Part II
Chapter 3: ProcessesChapter 3: Processes
Chapter 4: ThreadsChapter 4: Threads

Chapter 5: ConcurrencyChapter 5: Concurrency
Chapter 6: DeadlocksChapter 6: Deadlocks
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MotivationMotivationMotivation

•
 

Why parallelize a single 
program?

•
 

Two main reasons
━

 

Take advantage of 
multi-core CPU capacity

━

 

Perform many concurrent 
blocking operations quickly

•
 

While non-blocking I/O 
helps

 
with the second issue, it 

doesn’t solve the first one
━

 

Also makes code more complex

Code suitable for parallelizationCode suitable for parallelization

a non-threaded

 

process 
usually cannot utilize

 
more than one core

CPU-intensive 
computation

 

CPU-intensive 
computation

Many blocking 
operations

 

Many blocking 
operations

network connections, 
pipes, user events
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TaxonomyTaxonomyTaxonomy

•
 

Why not fork a new 
process then?

•
 

Two main issues:
━

 

Frequent process context 
switch is expensive

━

 

Data sharing may be
 inefficient (i.e., through

 kernel) and possibly tedious
 to program

•
 

Thus, there is a need for a 
simpler/faster

 
concurrency 

model that uses threads
━

 

Thread
 

is a dispatchable 
unit of work within a 
process

process

process1 processN

process

process1 processN

single process, single 
thread (MS-DOS)

multiple 
processes, 

single thread 
(old Unix)

single process, 
multiple threads 
(user library over 

uniprogramming OS)

multiple 
processes, 

multiple threads 
(modern OSes)
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How to Implement ThreadsHow to Implement ThreadsHow to Implement Threads

•
 

Historically, threads didn’t exist 
in multi-tasked OSes
━

 

Users wrote special libraries 
to

 
emulate threads 

━

 

OS scheduled the process, 
then library scheduled threads

•
 

Benefits of User-Level Threads
 

(ULT):
━

 

Thread switch completely in user mode (i.e., fast)
━

 

Control over scheduler and its policy
━

 

Portability of code (no dependency on OS APIs)
•

 
Problems:
━

 

When kernel APIs block, the entire process is blocked
━

 

No ability to run concurrently on multiple CPUs

thread librarythread library

kernel process 
scheduler

 

kernel process 
scheduler

process

old Unix
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How to Implement ThreadsHow to Implement ThreadsHow to Implement Threads

•
 

Later,
 

OSes became thread-
 aware and offered Kernel-Level 

Threads (KLT)
━

 

Another term is Light Weight 
Processes (LWT)

•
 

Benefits
 

of KLT:
━

 

Multi-CPU usage by the same 
program;

 
I/O blocks only threads 

that use it, others run unimpeded
•

 
Drawbacks compared to ULT:
━

 

Requires kernel mode switch after 
each slice (lower performance)

━

 

Less flexibility with scheduling

kernel thread 
scheduler

 

kernel thread 
scheduler

process

Windows/Linux
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PerformancePerformancePerformance

•
 

How expensive is 
context switch?
━

 

Traditional numbers 
suggest ULT switch is 
10x faster than KLT, 
which is 4-5x

 
faster than 

process switch
•

 
Windows benchmark 
agrees with the last 
ratio
━

 

ULT rarely used on 
Windows, no 
performance results 
readily available

Operation ULT KLT Process

Create 34 948 11,300
Event wait + switch 37 441 1,840

Operation ULT KLT Process

Event wait + switch 0.44 2.2

old VAX Unix

AMD Phenom

 

II X6 2.8 GHz

delay in microsec

•
 

While these latencies are 
small, they do increase as 
the # of threads/processes 
in the ready

 
state rises
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Kernel ThreadsKernel ThreadsKernel Threads

•
 

Difference from the single-threaded model
━

 

Threads have separate stacks and execution context called 
Thread Control Block

 
(TCB), but share all virtual

 
memory

DataData

Program codeProgram code

User stackUser stack

PCBPCB

process image

Shared memoryShared memory
Kernel stackKernel stack

single-threaded 
process

DataData

Program codeProgram code
User stack1

 

User stack1

PCBPCB

process image

Shared memoryShared memory

Kernel stack1

 

Kernel stack1

TCB1

 

TCB1

User stackN

 

User stackN

Kernel stackN

 

Kernel stackN

TCBN

 

TCBN

thread1 threadN

multi-threaded process
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Kernel ThreadsKernel ThreadsKernel Threads

•
 

OS still enforces separation between processes
━

 

However, threads are not protected from each other
━

 

Buffer overflow in one thread may wipe out data
 

of
 

other 
threads in the same process

•
 

Process owns
━

 

Virtual address space and shared memory
━

 

Security attributes of all objects (e.g., open files)
•

 
Threads own
━

 

TCB that includes thread state (e.g., blocked, running, ready), 
thread context (registers), scheduler priorities and its auxiliary 
info, pending wait events

━

 

Execution stack (user and kernel)
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Using ThreadsUsing ThreadsUsing Threads

•
 

In Windows:

•
 

Security = NULL, stacksize = 0 (default), flags = 0
•

 
Must provide the address of start function
━

 

Thread executes from that address
━

 

Current thread continues as normal
•

 
Definition of a thread function:

HANDLE WINAPI CreateThread (
__in_opt LPSECURITY_ATTRIBUTES lpThreadAttributes,
__in SIZE_T dwStackSize,
__in LPTHREAD_START_ROUTINE lpStartAddress,
__in_opt LPVOID lpParameter, 
__in DWORD dwCreationFlags,
__out_opt LPDWORD lpThreadId ); 

typedef DWORD 
(__stdcall *LPTHREAD_START_ROUTINE) 
( [in] LPVOID lpThreadParameter ); 

DWORD __stdcall MyThread (LPVOID lpThreadParameter); 
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Using ThreadsUsing ThreadsUsing Threads

#define THREADS_TO_RUN 100
void main (void) {

HANDLE thread [THREADS_TO_RUN]; // stores thread handles
ThreadParams t [THREADS_TO_RUN]; // parameters passed to threads
MyExample me;   me.count = 0;

for (int i = 0; i < THREADS_TO_RUN; i++) { // start a bunch of threads
t[i].threadID = i; // assign seq # to this thread
t[i].me = &me; // must pass a pointer to shared variables/classes
// run thread with default stack size
if ((thread [i] = CreateThread (NULL, 0, ThreadStarter, t + i, 0, NULL)) == NULL) {

printf (“failed to create thread %d, error %d\n", i, GetLastError());
exit (-1);

}
}
for (int i = 0; i < THREADS_TO_RUN; i++) { // now hang here waiting for threads to quit

WaitForSingleObject (thread [i], INFINITE);
CloseHandle (thread[i]);

}
printf (“result = %d\n”, me.count);

}

#define THREADS_TO_RUN 100
void main (void) {

HANDLE thread [THREADS_TO_RUN]; // stores thread handles
ThreadParams t [THREADS_TO_RUN]; // parameters passed to threads
MyExample me;   me.count = 0;

for (int i = 0; i < THREADS_TO_RUN; i++) { // start a bunch of threads
t[i].threadID = i; // assign seq # to this thread
t[i].me = &me; // must pass a pointer to shared variables/classes
// run thread with default stack size
if ((thread [i] = CreateThread (NULL, 0, ThreadStarter, t + i, 0, NULL)) == NULL) {

printf (“failed to create thread %d, error %d\n", i, GetLastError());
exit (-1);

}
}
for (int i = 0; i < THREADS_TO_RUN; i++) { // now hang here waiting for threads to quit

WaitForSingleObject (thread [i], INFINITE);
CloseHandle (thread[i]);

}
printf (“result = %d\n”, me.count);

}

DWORD __stdcall ThreadStarter (LPVOID p) {
ThreadParams *t = (ThreadParams*) p;
t->me->Run (t->threadID);
return 0;

} 

DWORD __stdcall ThreadStarter (LPVOID p) {
ThreadParams *t = (ThreadParams*) p;
t->me->Run (t->threadID);
return 0;

} 

class ThreadParams {
public:

MyExample* me;
int threadID;

};

class ThreadParams {
public:

MyExample* me;
int threadID;

};

class MyExample {
public:

int count;
void Run (int threadID);

};

class MyExample {
public:

int count;
void Run (int threadID);

};
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Using ThreadsUsing ThreadsUsing Threads

•
 

Try to encapsulate all 
functionality inside your class member functions

•
 

Local variables are never
 shared (they stay in thread

 stack)
•

 
Global and static variables
━

 

Shared between threads, 
but they are considered 
bad style and thus 
not recommended

•
 

Heap-allocated blocks
━

 

Normally not shared unless you provide a common pointer to 
multiple threads and they dereference it

void MyExample::Run (int threadID)
{

Sleep (100);
count ++;
printf ("Thread %d finished\n", threadID);

}

void MyExample::Run (int threadID)
{

Sleep (100);
count ++;
printf ("Thread %d finished\n", threadID);

}

int b = 3; // global
void MyExample::Run (int threadID)
{

static int a = 4; // static
a += 70;
b += 70;

} 

int b = 3; // global
void MyExample::Run (int threadID)
{

static int a = 4; // static
a += 70;
b += 70;

} 

void MyExample::Run (int threadID)
{

int a = 4; // local
Sleep (100);
a += 70;

}

void MyExample::Run (int threadID)
{

int a = 4; // local
Sleep (100);
a += 70;

}



14

Using ThreadsUsing ThreadsUsing Threads

•
 

Thread execution is non-deterministic
━

 

Threads can be interrupted at any time
━

 

Speed of execution may differ by any factor
•

 
Make

 
sure each thread gets its own copy of 

ThreadParams to avoid problems like this:

ThreadParams t;
t.me = &me;

for (int i = 0; i < THREADS_TO_RUN; i++) { // start a bunch of threads
t.threadID = i; // assign # to this thread
if ((thread [i] = CreateThread (NULL, 0, ThreadStarter, &t, 0, NULL)) == NULL) {

printf (“failed to create thread %d, error %d\n", i, GetLastError());
exit (-1);

}
}

ThreadParams t;
t.me = &me;

for (int i = 0; i < THREADS_TO_RUN; i++) { // start a bunch of threads
t.threadID = i; // assign # to this thread
if ((thread [i] = CreateThread (NULL, 0, ThreadStarter, &t, 0, NULL)) == NULL) {

printf (“failed to create thread %d, error %d\n", i, GetLastError());
exit (-1);

}
}

all threads may get their threadID

 

= THREADS_TO_RUN-1

void MyExample::Run (int threadID)
{

Sleep (100);
count ++;
printf ("Thread %d finished\n", threadID);

}

void MyExample::Run (int threadID)
{

Sleep (100);
count ++;
printf ("Thread %d finished\n", threadID);

}
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Chapter 4: RoadmapChapter 4: RoadmapChapter 4: Roadmap

4.1
 

Processes and threads
4.2 SMP
4.3 Micro-kernels
4.4 Windows threads
4.5 Solaris threads
4.6 Linux threads
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SMPSMPSMP

•
 

SMP (Symmetric Multi-Processing)
━

 

Consists of multiple CPUs
 

connected 
by bus

 
(e.g., HyperTransport in AMD)

━

 

Each CPU contains multiple cores
 and dedicated memory controller

•
 

SMP benefits:
━

 

Performance, ease of coding
━

 

Availability (e.g., failure of some 
CPUs does not have to crash 
the system)

━

 

Scalability (e.g., more CPUs can 
be added to an existing 
motherboard if it supports them)

CPU1

 

CPU1

core1

 

core1

core2

 

core2

CPU2

 

CPU2

core3

 

core3

core4

 

core4

memory 
controller

 

memory 
controller

memory 
controller

 

memory 
controller

RAM 
bank1

 

RAM 
bank1

RAM 
bank2

 

RAM 
bank2
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SMPSMPSMP

•
 

CPU clock speed no longer scales due to 
insurmountable heat problems
━

 

Scaling cores is much easier at this stage
•

 
Consumer-grade

 
computers today

━

 

Intel
 

Xeon w/56-cores,
 

8-CPU
 

configurations (448 cores
 

per 
motherboard), Intel Phi expansion card w/60 cores

━

 

CUDA (nVidia Titan)
 

video cards with 5000+
 

cores
•

 
Evolution

 
of computer 

architecture:
━

 

Sequential computers
 had a single CPU

━

 

Traditional 1940s-1950s 
mainframes

SequentialSequential ParallelParallel

ExecutionExecution
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SMPSMPSMP

•
 

Notation:
━

 

S = single, M = multiple
━

 

I = instruction, D = data
•

 
Level 1
━

 

SISD: single core, 
no internal parallelism

━

 

SIMD: single core, can run
 

the same 
instruction on

 
multiple RAM locations

 
in

 parallel (e.g., video cards, SSE, MMX, AVX)
━

 

MIMD: different instructions on different data 
(i.e., multiple cores)

━

 

MISD: rarely
 

implemented

SequentialSequential ParallelParallel

SIMDSIMD MIMDMIMD

ExecutionExecution

SISDSISD
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SMPSMPSMP

•
 

Level 2:
━

 

Shared memory: 
single motherboard

━

 

Distributed memory: multiple 
computers

•
 

Level 3:
━

 

Asymmetric:
 

OS runs
 

on 
dedicated core,

 
programs 

run
 

everywhere else
━

 

SMP: OS and programs share all cores (modern 
computers and kernels)  this course

━

 

Clusters: racks of servers, possibly 
geographically distributed in datacenters

SequentialSequential ParallelParallel

SIMDSIMD MIMDMIMD

Shared 
memory

 

Shared 
memory

Distributed 
memory

 

Distributed 
memory

AsymmetricAsymmetric SMPSMP

ClustersClusters

ExecutionExecution

SISDSISD
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Wrap-upWrapWrap--upup

•
 

Cache coherence
 

issues affect
 

consistency and 
performance when multiple threads modify the same 
RAM location

CPU1

 

CPU1

core2

 

core2

memory controllermemory controller

RAM bank1

 

RAM bank1 RAM bank2

 

RAM bank2

L2 cacheL2 cache

L1 cacheL1 cache
core1

 

core1

L2 cacheL2 cache

L1 cacheL1 cache

CPU2

 

CPU2

core4

 

core4

memory controllermemory controller

L2 cacheL2 cache

L1 cacheL1 cache
core3

 

core3

L2 cacheL2 cache

L1 cacheL1 cache

L3 cacheL3 cache
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