
1

CSCE 313-200
 Introduction to Computer Systems

 Spring 2025

CSCE CSCE 313313--200200
 Introduction to Computer SystemsIntroduction to Computer Systems

 Spring 2025Spring 2025

ThreadsThreads
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

January 28, 2025January 28, 2025

22

UpdatesUpdatesUpdates

•

Quiz

on Thursday
━

System Programming Tutorial (pay attention to exercises)
━

Pointers, VS debugging tools/strategies, APIs
━

Common Microsoft data types
━

The last two lectures (OS concepts, processes)
•

Common issues in hw1p1
━

Not waiting for CC.exe to exit
━

Printing room with %X instead of %llX
━

Not handling CC errors in ResponseCC::status
•

Make sure to check

for API errors

━

Catches

bugs sooner, simplifies debugging

3

Chapter 4: RoadmapChapter 4: RoadmapChapter 4: Roadmap

4.1 Processes and threads
4.2 SMP
4.3 Micro-kernels
4.4 Windows threads
4.5 Solaris threads
4.6 Linux threads

Part II
Chapter 3: ProcessesChapter 3: Processes
Chapter 4: ThreadsChapter 4: Threads

Chapter 5: ConcurrencyChapter 5: Concurrency
Chapter 6: DeadlocksChapter 6: Deadlocks

4

MotivationMotivationMotivation

•

Why parallelize a single
program?

•

Two main reasons
━

Take advantage of
multi-core CPU capacity

━

Perform many concurrent
blocking operations quickly

•

While non-blocking I/O
helps

with the second issue, it

doesn’t solve the first one
━

Also makes code more complex

Code suitable for parallelizationCode suitable for parallelization

a non-threaded

process
usually cannot utilize

more than one core

CPU-intensive
computation

CPU-intensive
computation

Many blocking
operations

Many blocking
operations

network connections,
pipes, user events

5

TaxonomyTaxonomyTaxonomy

•

Why not fork a new
process then?

•

Two main issues:
━

Frequent process context
switch is expensive

━

Data sharing may be
 inefficient (i.e., through

 kernel) and possibly tedious
 to program

•

Thus, there is a need for a
simpler/faster

concurrency

model that uses threads
━

Thread

is a dispatchable
unit of work within a
process

process

process1 processN

process

process1 processN

single process, single
thread (MS-DOS)

multiple
processes,

single thread
(old Unix)

single process,
multiple threads
(user library over

uniprogramming OS)

multiple
processes,

multiple threads
(modern OSes)

6

How to Implement ThreadsHow to Implement ThreadsHow to Implement Threads

•

Historically, threads didn’t exist
in multi-tasked OSes
━

Users wrote special libraries
to

emulate threads

━

OS scheduled the process,
then library scheduled threads

•

Benefits of User-Level Threads

(ULT):
━

Thread switch completely in user mode (i.e., fast)
━

Control over scheduler and its policy
━

Portability of code (no dependency on OS APIs)
•

Problems:
━

When kernel APIs block, the entire process is blocked
━

No ability to run concurrently on multiple CPUs

thread librarythread library

kernel process
scheduler

kernel process
scheduler

process

old Unix

7

How to Implement ThreadsHow to Implement ThreadsHow to Implement Threads

•

Later,

OSes became thread-
 aware and offered Kernel-Level

Threads (KLT)
━

Another term is Light Weight
Processes (LWT)

•

Benefits

of KLT:
━

Multi-CPU usage by the same
program;

I/O blocks only threads

that use it, others run unimpeded
•

Drawbacks compared to ULT:
━

Requires kernel mode switch after
each slice (lower performance)

━

Less flexibility with scheduling

kernel thread
scheduler

kernel thread
scheduler

process

Windows/Linux

8

PerformancePerformancePerformance

•

How expensive is
context switch?
━

Traditional numbers
suggest ULT switch is
10x faster than KLT,
which is 4-5x

faster than

process switch
•

Windows benchmark
agrees with the last
ratio
━

ULT rarely used on
Windows, no
performance results
readily available

Operation ULT KLT Process

Create 34 948 11,300
Event wait + switch 37 441 1,840

Operation ULT KLT Process

Event wait + switch 0.44 2.2

old VAX Unix

AMD Phenom

II X6 2.8 GHz

delay in microsec

•

While these latencies are
small, they do increase as
the # of threads/processes
in the ready

state rises

9

Kernel ThreadsKernel ThreadsKernel Threads

•

Difference from the single-threaded model
━

Threads have separate stacks and execution context called
Thread Control Block

(TCB), but share all virtual

memory

DataData

Program codeProgram code

User stackUser stack

PCBPCB

process image

Shared memoryShared memory
Kernel stackKernel stack

single-threaded
process

DataData

Program codeProgram code
User stack1

User stack1

PCBPCB

process image

Shared memoryShared memory

Kernel stack1

Kernel stack1

TCB1

TCB1

User stackN

User stackN

Kernel stackN

Kernel stackN

TCBN

TCBN

thread1 threadN

multi-threaded process

10

Kernel ThreadsKernel ThreadsKernel Threads

•

OS still enforces separation between processes
━

However, threads are not protected from each other
━

Buffer overflow in one thread may wipe out data

of

other
threads in the same process

•

Process owns
━

Virtual address space and shared memory
━

Security attributes of all objects (e.g., open files)
•

Threads own
━

TCB that includes thread state (e.g., blocked, running, ready),
thread context (registers), scheduler priorities and its auxiliary
info, pending wait events

━

Execution stack (user and kernel)

11

Using ThreadsUsing ThreadsUsing Threads

•

In Windows:

•

Security = NULL, stacksize = 0 (default), flags = 0
•

Must provide the address of start function
━

Thread executes from that address
━

Current thread continues as normal
•

Definition of a thread function:

HANDLE WINAPI CreateThread (
__in_opt LPSECURITY_ATTRIBUTES lpThreadAttributes,
__in SIZE_T dwStackSize,
__in LPTHREAD_START_ROUTINE lpStartAddress,
__in_opt LPVOID lpParameter,
__in DWORD dwCreationFlags,
__out_opt LPDWORD lpThreadId);

typedef DWORD
(__stdcall *LPTHREAD_START_ROUTINE)
([in] LPVOID lpThreadParameter);

DWORD __stdcall MyThread (LPVOID lpThreadParameter);

12

Using ThreadsUsing ThreadsUsing Threads

#define THREADS_TO_RUN 100
void main (void) {

HANDLE thread [THREADS_TO_RUN]; // stores thread handles
ThreadParams t [THREADS_TO_RUN]; // parameters passed to threads
MyExample me; me.count = 0;

for (int i = 0; i < THREADS_TO_RUN; i++) { // start a bunch of threads
t[i].threadID = i; // assign seq # to this thread
t[i].me = &me; // must pass a pointer to shared variables/classes
// run thread with default stack size
if ((thread [i] = CreateThread (NULL, 0, ThreadStarter, t + i, 0, NULL)) == NULL) {

printf (“failed to create thread %d, error %d\n", i, GetLastError());
exit (-1);

}
}
for (int i = 0; i < THREADS_TO_RUN; i++) { // now hang here waiting for threads to quit

WaitForSingleObject (thread [i], INFINITE);
CloseHandle (thread[i]);

}
printf (“result = %d\n”, me.count);

}

#define THREADS_TO_RUN 100
void main (void) {

HANDLE thread [THREADS_TO_RUN]; // stores thread handles
ThreadParams t [THREADS_TO_RUN]; // parameters passed to threads
MyExample me; me.count = 0;

for (int i = 0; i < THREADS_TO_RUN; i++) { // start a bunch of threads
t[i].threadID = i; // assign seq # to this thread
t[i].me = &me; // must pass a pointer to shared variables/classes
// run thread with default stack size
if ((thread [i] = CreateThread (NULL, 0, ThreadStarter, t + i, 0, NULL)) == NULL) {

printf (“failed to create thread %d, error %d\n", i, GetLastError());
exit (-1);

}
}
for (int i = 0; i < THREADS_TO_RUN; i++) { // now hang here waiting for threads to quit

WaitForSingleObject (thread [i], INFINITE);
CloseHandle (thread[i]);

}
printf (“result = %d\n”, me.count);

}

DWORD __stdcall ThreadStarter (LPVOID p) {
ThreadParams *t = (ThreadParams*) p;
t->me->Run (t->threadID);
return 0;

}

DWORD __stdcall ThreadStarter (LPVOID p) {
ThreadParams *t = (ThreadParams*) p;
t->me->Run (t->threadID);
return 0;

}

class ThreadParams {
public:

MyExample* me;
int threadID;

};

class ThreadParams {
public:

MyExample* me;
int threadID;

};

class MyExample {
public:

int count;
void Run (int threadID);

};

class MyExample {
public:

int count;
void Run (int threadID);

};

13

Using ThreadsUsing ThreadsUsing Threads

•

Try to encapsulate all
functionality inside your class member functions

•

Local variables are never
 shared (they stay in thread

 stack)
•

Global and static variables
━

Shared between threads,
but they are considered
bad style and thus
not recommended

•

Heap-allocated blocks
━

Normally not shared unless you provide a common pointer to
multiple threads and they dereference it

void MyExample::Run (int threadID)
{

Sleep (100);
count ++;
printf ("Thread %d finished\n", threadID);

}

void MyExample::Run (int threadID)
{

Sleep (100);
count ++;
printf ("Thread %d finished\n", threadID);

}

int b = 3; // global
void MyExample::Run (int threadID)
{

static int a = 4; // static
a += 70;
b += 70;

}

int b = 3; // global
void MyExample::Run (int threadID)
{

static int a = 4; // static
a += 70;
b += 70;

}

void MyExample::Run (int threadID)
{

int a = 4; // local
Sleep (100);
a += 70;

}

void MyExample::Run (int threadID)
{

int a = 4; // local
Sleep (100);
a += 70;

}

14

Using ThreadsUsing ThreadsUsing Threads

•

Thread execution is non-deterministic
━

Threads can be interrupted at any time
━

Speed of execution may differ by any factor
•

Make

sure each thread gets its own copy of

ThreadParams to avoid problems like this:

ThreadParams t;
t.me = &me;

for (int i = 0; i < THREADS_TO_RUN; i++) { // start a bunch of threads
t.threadID = i; // assign # to this thread
if ((thread [i] = CreateThread (NULL, 0, ThreadStarter, &t, 0, NULL)) == NULL) {

printf (“failed to create thread %d, error %d\n", i, GetLastError());
exit (-1);

}
}

ThreadParams t;
t.me = &me;

for (int i = 0; i < THREADS_TO_RUN; i++) { // start a bunch of threads
t.threadID = i; // assign # to this thread
if ((thread [i] = CreateThread (NULL, 0, ThreadStarter, &t, 0, NULL)) == NULL) {

printf (“failed to create thread %d, error %d\n", i, GetLastError());
exit (-1);

}
}

all threads may get their threadID

= THREADS_TO_RUN-1

void MyExample::Run (int threadID)
{

Sleep (100);
count ++;
printf ("Thread %d finished\n", threadID);

}

void MyExample::Run (int threadID)
{

Sleep (100);
count ++;
printf ("Thread %d finished\n", threadID);

}

15

Chapter 4: RoadmapChapter 4: RoadmapChapter 4: Roadmap

4.1

Processes and threads
4.2 SMP
4.3 Micro-kernels
4.4 Windows threads
4.5 Solaris threads
4.6 Linux threads

16

SMPSMPSMP

•

SMP (Symmetric Multi-Processing)
━

Consists of multiple CPUs

connected
by bus

(e.g., HyperTransport in AMD)

━

Each CPU contains multiple cores
 and dedicated memory controller

•

SMP benefits:
━

Performance, ease of coding
━

Availability (e.g., failure of some
CPUs does not have to crash
the system)

━

Scalability (e.g., more CPUs can
be added to an existing
motherboard if it supports them)

CPU1

CPU1

core1

core1

core2

core2

CPU2

CPU2

core3

core3

core4

core4

memory
controller

memory
controller

memory
controller

memory
controller

RAM
bank1

RAM
bank1

RAM
bank2

RAM
bank2

17

SMPSMPSMP

•

CPU clock speed no longer scales due to
insurmountable heat problems
━

Scaling cores is much easier at this stage
•

Consumer-grade

computers today

━

Intel

Xeon w/56-cores,

8-CPU

configurations (448 cores

per
motherboard), Intel Phi expansion card w/60 cores

━

CUDA (nVidia Titan)

video cards with 5000+

cores
•

Evolution

of computer

architecture:
━

Sequential computers
 had a single CPU

━

Traditional 1940s-1950s
mainframes

SequentialSequential ParallelParallel

ExecutionExecution

18

SMPSMPSMP

•

Notation:
━

S = single, M = multiple
━

I = instruction, D = data
•

Level 1
━

SISD: single core,
no internal parallelism

━

SIMD: single core, can run

the same
instruction on

multiple RAM locations

in

 parallel (e.g., video cards, SSE, MMX, AVX)
━

MIMD: different instructions on different data
(i.e., multiple cores)

━

MISD: rarely

implemented

SequentialSequential ParallelParallel

SIMDSIMD MIMDMIMD

ExecutionExecution

SISDSISD

19

SMPSMPSMP

•

Level 2:
━

Shared memory:
single motherboard

━

Distributed memory: multiple
computers

•

Level 3:
━

Asymmetric:

OS runs

on
dedicated core,

programs

run

everywhere else
━

SMP: OS and programs share all cores (modern
computers and kernels)  this course

━

Clusters: racks of servers, possibly
geographically distributed in datacenters

SequentialSequential ParallelParallel

SIMDSIMD MIMDMIMD

Shared
memory

Shared
memory

Distributed
memory

Distributed
memory

AsymmetricAsymmetric SMPSMP

ClustersClusters

ExecutionExecution

SISDSISD

20

Wrap-upWrapWrap--upup

•

Cache coherence

issues affect

consistency and
performance when multiple threads modify the same
RAM location

CPU1

CPU1

core2

core2

memory controllermemory controller

RAM bank1

RAM bank1 RAM bank2

RAM bank2

L2 cacheL2 cache

L1 cacheL1 cache
core1

core1

L2 cacheL2 cache

L1 cacheL1 cache

CPU2

CPU2

core4

core4

memory controllermemory controller

L2 cacheL2 cache

L1 cacheL1 cache
core3

core3

L2 cacheL2 cache

L1 cacheL1 cache

L3 cacheL3 cache

	CSCE 313-200�Introduction to Computer Systems�Spring 2025
	Updates
	Chapter 4: Roadmap
	Motivation
	Taxonomy
	How to Implement Threads
	How to Implement Threads
	Performance
	Kernel Threads
	Kernel Threads
	Using Threads
	Using Threads
	Using Threads
	Using Threads
	Chapter 4: Roadmap
	SMP
	SMP
	SMP
	SMP
	Wrap-up

