CSCE 313-200

Introduction to Computer Systems
Spring 2025

Synchronization i

Dmitri Loguinov
Texas A&M University

February 11, 2025

Updates

 Midterm on Thursday

- Covers everything since the beginning of the semester up to
and including last Thursday

- Questions drawn from lectures and homework #1 parts 1-2
- Material in the book not discussed in class can be ignored
- Chapter 5 problems (5.1-5.11) might be useful

 Make sure to understand Windows APls
- Meaning of parameters, usage in practice, possible errors
- Reading/writing of pipes, creation of processes

* Be proficient in the 4 types of searches

- Able to reproduce and discuss the algorithms, understand
necessity for the two data structures (i.e., U and D)

U dates divide by elapsed time

How to print statistics every 2 seconds?
- Separate stats thread
- Your wakeup time may be 2.1, 2.5, or 3 seconds aﬁart!

Make sure to print correct values
- Printf recommended for progress report
- Exit room ID when found, distance from rover, steps taken

Win32/x86 processes max out at ~1400 threads

Can set thread stack size to 65,536 bytes:
- Project Properties—>Linker-> System-> Stack Reserve Size
- Win32: this allows up to 6000 threads, x64: limited by RAM

All robots initially in the same room with the rover
- Check discovered set D before dropping initial room into U

Idle

Updates Lowest

Below normal

Normal

Priorit
orities Above normal

- Thread priority is based on a combination Highest

of two things: process priority class and

thread priority level within that class Ul et

- SetPriorityClass() and SetThreadPriority()

When running a massive amount of threads
- Set priority of search threads to idle, stats to above normal

CPU affinity

- CPU restrictions expressed as bit masks
- SetProcessAffinityMask(), SetThreadAffinityMask()

How to set mask to include only CPU 0 and 47?
- UINT64 mask =1 + (1 <<4)

Homework #1 (Extra Credit

Monster randomly rampages in the cave

- Eats flybots it can find, jams
message transmission

- Monster caves numbered 1000 and above, only planets 6-7

If flybot is eaten
- ReadFile/WriteFile block forever or return errors

- Must re-insert the room where this happened back at the front
of the queue and quit thread that experienced this condition

Jammed transmission

- Bogus status, truncated messages, or non-integer number of
NodeTuple64s in the response

- Discard invalid response and retry the room in same thread
Sending robots to invalid room crashes CC.exe 5

Homework #1 (Extra Credit

* Non-blocking pipes with ReadFile/WriteFile

- Approach below is asynchronous, but not truly overlapped as
it keeps only one pending request to the pipe

- We’'ll see another version when dealing with file 1/0

// simple approach to catching timeouts
pipe = CreateFile (..., FILE_ATTRIBUTE_NORMAL|FILE_FLAG_OVERLAPPED, ...);

OVERLAPPED ol; // memset ol to zero

bRet = ReadFile (pipe, ..., NULL, &ol); // does not return bytesRead
// 1T bRet i1s FALSE, check i1f GetLastError() equals ERROR 10 PENDING
// 1Tt so, ignore the error, continue; otherwise, terminate thread

bRet = WairtForSingleObject (pipe, timeout);

// bRet could be WAIT _TIMEOUT, WAIT OBJECT O, or some error

// 1T successful, obtain the # of bytes read:

GetOverlappedResult (pipe, &ol, ...);

« What's a good timeout value?

Chapter 5: Roadmap

5.1 Concurrency
5.2 Hardware mutex
5.3 Semaphores

5.4 Monitors

5.5 Messages

5.6 Reader-Writer

Mutex

* Windows kernel mutex has semantics close to a binary
semaphore 2.0, with two exceptions:
- Repeated mutex lock from the same thread does not block it
- Mutex can only be unlocked by the thread that locked it

 Examples:

Semaphore semaX = {1, 1}; // (s,max) | ! | Mutex m; // unlocked
Thread O { . | Thread O {
semaX.Wait(Q); // P | m.Lock(Q);
semaX._Wait(); // P i m.Lock();
by | Y
deadlocks because it attempts | works fine as this thread

to decrement s twice § already owns the mutex

Mutex

thread, deadlocks if thread,
runs first; how to fix this?

« Examples (cont'd):
Semaphore semaX = {1, 1}; // (s.,max) Semaphore semaX = {1, 1}; // (s,max)
Threadl () { Thread2 () {
semaX.Wait(Q); // P // some initialization
semaX.Wait(); // P semaX.Release(); // N
} +

’J

thread, blocks temporarily, then
gets unblocked by thread,

Mutex m; Mutex m; // initially unlocked
Threadl () { Thread2 () { // thread2 runs fTirst
m.Unlock(); // does nothing m.Lock();
} // long critical section
C ¥

thread, fails to unlock
mutex owned by thread,

Event

class Event {

int S; // state
int mode;
List blocked;

Wait (); Set (); Reset (;

}

* The last standard synchronization primitive is an event

- An event can be in two states: signaled (1) and non-signaled
(0) just like a binary semaphore

 However, it also has two possible modes of operation

- AUTO = binary semaphore
- MANUAL = event stays signaled until manually reset

Event::Wait() {
iIT (s == NOT_SIGNALED)
// block current thread
else 1T (mode == AUTO)
s = NOT_SIGNALED;

}

Event::Set() {
iIT (blocked.size() > 0)
1T (mode == AUTO)
// unblock 1 thread
else
// unblock all threads

Event: :Reset() {
S = NOT_SIGNALED;

}

s = SIGNALED;
else
s = SIGNALED;

10

HANDLE WINAPI CreateSemaphore(

W"' d AP' __in_opt LPSECURITY_ATTRIBUTES

ln OWS S IpSemaphoreAttributes,
__1In LONG IInitialCount,

__1In LONG IMaximumCount,

__1n_opt LPCTSTR HIpName);

« Semaphore
- Security is NULL as always
- Name can be used when « CreateMutex/CreateEvent
multiple processes needto _ Can specify if this thread
open the same object initially owns the mutex and
« Wait (i.e., P) initial state for event
- WaitForSingleObiject() « Locking done with

- Returns WAIT_OBJECT_O0 \WaitForSingleObject()
when ready

- Unlocking with
- WA'T_TIMEOUT if timeout ReleaseMutex() and
- Otherwise, an error signaling with SetEvent()
* Release (i.e., V) * Resetting events

- ReleaseSemaphore(N) - ResetEvent() .

Unbounded Producer-Consumer

* Producer-consumer is probably the most frequently
encountered synchronization problem in programming
- Will be solved using semaphores and mutexes

o Start with the unbounded version

unlimited queue
K producers M consumers

* Producer threads create new items and deposit them
into the shared buffer/queue
- Consumer threads read from the buffer and process them

* Note that in some applications the same thread may
act as producer and consumer at different times
- This is the case in homework #1 ”

Unbounded Producer-Consumer

« Several attempts to create a solution

- PCv1.0

Queue Q;
Producer() {
while (true) {
// make 1tem X
Q.add (xX);
+

}

- PC v1.1

Queue Q;
Consumer() {
while (true) {
iIT (Q.size() > 0)
X = Q.popQ);
// consume X
+
+

Queue Q;

Mutex m;

Producer() {

while (true) {

// make 1tem X
m.Lock();
Q.add (x);
m.Unlock();

ueue Q;
ﬁutex 3; problems?
Consumer() {
while (true) {
m.Lock();
iIT (Q.size() > 0)
X = Q.popQ);
// consume X
m.Unlock();

Unbounded Producer-Consumer

* Ver 1.0 crashes on access to shared queue if used by

multiple threads

* Ver 1.1 busy-spins waiting for queue to be non-empty

» ldea: assign a counting semaphore to control how
many threads may attempt to read from the Q

- PCv1.2

Queue Q;

Mutex m;

Semaphore sema = {0, oo};

Producer() {

while (true) {

// make i1tem X
m.Lock();
Q.add (xX);
sema.Release();
m.Unlock();

Queue Q;
Mutex m;

problems?

Semaphore sema = {0, oo};
Consumer() {
while (true) {

sema.Wait ();

m.Lock();

// no need to check Q.size
X = Q-popQ);

m.Unlock();

// consume X outside

// the critical section

Unbounded Producer-Consumer

* Ver 1.2 releases consumer on semaphore, which then
gets immediately blocked on mutex; not efficient

- PCv1.3
Queue Q; Queue Q;
Mutex m; Mutex m;

Semaphore sema = {0, oo};
Producer() {
whille (true) {

// make i1tem Xx
m.Lock();
Q.add (X);
m.Unlock();
sema.Release();

Semaphore sema = {0, oo};
Consumer() {
while (true) {
sema.Wait ();
m.Lock();
// no need to check Q.size
X = Q.-popQ);
m.Unlock();
// consume X outside
// the critical section

}
}

 What if N items are produced in each iteration?

15

Unbounded Producer-Consumer

 If producer is bursty (i.e., generates many items at
once), then ver 1.3 is also inefficient
- PCv1l4

Queue Q;
Mutex m;

Semaphore sema = {0, oo};
Producer() {
while (true) {

// make x[O0],---, X[N-1]

m.Lock();

for (i = 0; 1 < Nj; I1++)
Q.add (X[iD);

m.Unlock();

// Windows allows batch

// release

sema.Release(N);

Queue Q;

Mutex m;

Semaphore sema = {0, oo};

Consumer() {

while (true) {

sema.Wait ;
m.Lock();
// no need to check Q.size
X = Q.popQ);
m.Unlock();
// consume X outside
// the critical section

16

Homework #1

« Multi-threaded search algorithm (rough idea)

Mutex m; // not locked initially
Semaphore sema = {0, nMax}; // how to choose nMax?

Search::Run (...) // each thread runs this
{
while (true) {
// consumer starts here --———————-
sema.Wait);

m.Lock(); :
= UosoopO): how does this

m.Unlock(); terminate?

// contact the robot and obtain x’s neighbors

// producer starts here -——-—————————-
counter = 0O; // local variable that counts new neighbors
m.Lock();
for (each y = neighbor of x)
ifT (D->CheckAdd(y) == false)
U->add (y);
counter ++;
m.Unlock();
sema.Release(counter);

Homework #1

« How about this:

Event eventQuit; // initially not signaled

{

// contact the robot and obtain x’s neighbors
iIfT (x == exitNode)
eventQuit.Signal();

// producer starts here - —--—————————-

}

by

« Other conditions when we can signal termination?
- U is empty and no more deposits into it are possible

« How to react to eventQuit?

- Near the end, most threads will be blocked on semaphore
18

Homework #1

event), we need

- bWaitAll = false means
any of the handles can
wake up this thread

- Otherwise, all handles
must be simulataneously
ready

In order to wait on two objects (i.e., semaphore and

DWORD WINAPI WairtForMultipleObjects(
__in DWORD nCount,
__1n const HANDLE *IpHandles,
__1n BOOL bWartAll,
~_1n DWORD dwMilliseconds);

When handle IpHandles[k] is triggered, this function

returns WAIT _OBJECT 0 + k

The order of handles in the array Is important!

- |f multiple handles are simultaneously in the signaled state,
the return value indicates the first of them

19

Wrap-u
should the event be
manual or auto?

 More complete version: |
Mutex m; // not locked initially int counter = 0; // local var
Semaphore sema = {0, nMax}; // deposit neighbors -————————-
Event eventQuit; // signaled to quit m.Lock();
int activeThreads = 0; // shared for (each y = neighbor of x)
Search::Run(...) { ifT (D->CheckAdd (y) == false)
while (true) { U->add (y);
// need to quit or work? counter ++;
if (WaitAny (eventQuit, sema) activeThreads --;
== eventQuit) iIfT (U->size() == 0 &
break; activeThreads == 0)
m.Lock(); eventQuit.Signal();
x = U->pop(); m.Unlock();
activeThreads ++; iIfT (counter > 0)
m.Unlock(); sema.Release(counter);
by
// check if x is the exit }
ifT (x == exitNode)
eventQuit.Signal();
continue;

 How to count running threads?

- Printouts must include both running and active threads 2

	CSCE 313-200�Introduction to Computer Systems�Spring 2025
	Updates
	Updates
	Updates
	Homework #1 (Extra Credit)
	Homework #1 (Extra Credit)
	Chapter 5: Roadmap
	Mutex
	Mutex
	Event
	Windows APIs
	Unbounded Producer-Consumer
	Unbounded Producer-Consumer
	Unbounded Producer-Consumer
	Unbounded Producer-Consumer
	Unbounded Producer-Consumer
	Homework #1
	Homework #1
	Homework #1
	Wrap-up

