CSCE 313-200

Introduction to Computer Systems
Spring 2025

Synchronization V

Dmitri Loguinov
Texas A&M University

February 25, 2025

DWORD _ stdcall HeapThread (...) {
U dates HANDLE heap = HeapCreate
Q (HEAP_NO_SERIALIZE,
4 * 1024 * sizeof(DWORD), 0);

DWORD **arr = new (DWORD *) [ITER];
for (int 1 = 0; 1 < ITER; i++)

) arr[i] = (DWORD*) HeapAlloc
Memory heapS (heap, HEAP_NO_SERIALIZE,
— Normal new/delete ops go Heapbestroy (heapys | (CHORD):
to the process heap ¥
- Internal mutex, slow delete 36M/s
* Private heap doesn’t need [owro _stacatt Heapthread (... ¢
HANDLE heap = HeapCreate
tO muteX (HEAP_NO_SERIALIZE,
_ 4 * 1024 * sizeof(DWORD), 0);
- Benchmark with 12 threads DHORD **arr = new (OHORD *y [ITER]-
on a 6-core system for (int i=0; i < ITER; i++)
arr[i] = (DWORD*) HeapAlloc
#define ITER 1le7 (heap, HEAP_NO_SERIALIZE,
DWORD _ stdcall HeapThread (...) { sizeof(DWORD)) ;
DWORD **arr = new (DWORD *) [ITER];
for (int i=0; i < ITER; i++) for (int i=0; i < ITER; i++)
arr[i] = new DWORD [1]; HeapFree (heap,
HEAP_NO_SERIALIZE, arr[i]);
for (int i=0; i < ITER; i++) }
delete arr[i];
3 3.3M/s 12M/s

Chapter 5: Roadmap

5.1 Concurrency
5.2 Hardware mutex
5.3 Semaphores

5.4 Monitors

5.5 Messages

5.6 Reader-Writer

header

Messages vayload

message |
 Messages are discrete
chunks of information \
exchanged between * In general form, message
processes consists of fixed header
— This form of IPC is often and some payload

used between different « Header may specify

Aesits - Version and protocol #
* Where used - Message length, type,
- Pipes (one-to-one) various attributes
- Malilslots (one_-to-many - Status and error conditions
among nosts in the + Already studied enough in

active directory domain)

Chapter 5: Roadmap

5.1 Concurrency
5.2 Hardware mutex
5.3 Semaphores

5.4 Monitors

5.5 Messages

5.6 Reader-Writer

Reader-Writer (RW)

« RW is another famous synchronization problem

 Assume a shared object that is accessed by M readers
and K writers in parallel

 Example: suppose hw#1 restricted robot MOVE
commands to only adjacent rooms

- This requires construction of a global graph G as new edges
are being discovered from the threads (writer portion)

- To make a move, each thread has to plot a route to the new
location along the shortest path in G (reader portion)
* Any number of readers may read concurrently

- However, writers need exclusive access to the object (i.e.,
must mutex against all readers and other writers)

Reader-Writer

« Q: based on your intuition, do readers or writers
usually access the object more frequently?

* First stab at the problem:
- RW1.0 Writer::GoWrite O {

semaW.Wait();
Reader::GoRead () { // write object
mutexRcount.Lock(); semaW.Release();
// Tirst reader blocks writers 3
iIT (readerCount == 0)
semaW.wWait();
readerCount ++;
mutexRcount.Unlock(); ° Ir]fir]itea EStFEBEirT1 c)f
// read object readers?
mutexRcount.Lock(); .
readerCount--; - Writers never get access
// last reader unblocks writers
if (readerCount == 0) I
e oty « RW 1.0 gives readers
R .Unlock(); 2 -
, mutexfeount-fnfockO priority and starves

writers !

Reader-Writer

increasing writer thread priority
may help against being starved

* Another policy is to let the OS load-balance the order
In which readers and writers enter the critical section

- RW 1.1

Writer::GoWrite () {

Reader::GoRead () { semaWriterPending.Wait();

semaWriterPending.Wait(); semaW.Wait();
semaWriterPending.Release(); // write object
mutexRcount.Lock(); semaW.Release();
// Tirst reader blocks writers semaWriterPending.Release();
if (readerCount == 0) }

semaW.Wait();
readerCount ++;
mutexRcount.Unlock();

« Serves readers/writers
texRcount. Lok in FIFQ ord_er If kernel
readerCount--; rT1lJtEB)(|E; fEilr

// last reader unblocks writers
iIT (readerCount == 0)

semaW.Release(); « What if 100x more

mutexRcount.Unlock();

} readers than writers? s

// read object

Reader-Writer

* Final policy: writers have absolute priority
- Given a pending writer, no reader may enter

= RW 12 Writer::GoWrite O {
mutexWcount.Lock();
Reader::GoRead () { if (writerCount++ == 0)
semaWriterPending.Wait(); semaWriterPending.Wait();
semaWriterPending.Release(); ¢— mutexWcount.Unlock();
mutexRcount.Lock();
// first reader blocks writers semaW.Wait();

if (readerCount++ == 0) // write object
semaW.Wait(); semaW.Release();

mutexRcount.Unlock();
mutexWcount.Lock();

// read object ifT (--writerCount == 0)
semaWriterPending.Release();

mutexRcount.Lock(); mutexWcount.Unlock();

// last reader unblocks writers }

if (--readerCount == 0)
semaW.Release();

) mutexRcount.Unlock(); o WorkS flne except f”‘St
OS chooses between one erter Stl” mUSt Compete

writer and M readers 9

Reader-Writer

« To ensure priority for the first writer, need to prevent
readers from competing for semaWriterPending

- RW1.3

Reader::GoRead () {
mutexDontCompete.Lock();
semaWriterPending.Wait();
mutexRcount.Lock();

// fTirst reader blocks writers
if (readerCount++ == 0)

semaW.Wait();
mutexRcount.Unlock();
semaWriterPending.Release();
// pending writer gets unblocked here
mutexDontCompete.Unlock();

// read object

mutexRcount.Lock();

// last reader unblocks writers

if (--readerCount == 0)
semaW.Release();

mutexRcount.Unlock();

Writer::GoWrite O {
mutexWcount.Lock();
ifT (writerCount++ == 0)
semaWriterPending.Wait();
mutexWcount.Unlock();

semaW.Wait();
// write object
semaW.Release();

mutexWcount.Lock();

if (--writerCount == 0)
semaWriterPending.Release();

mutexWcount.Unlock();

 Textbook solution

- Works even if semaphore
is unfair 10

Reader-Writer

 What about the next solution that eliminates one lock
and rearranges some of the lines

- RW1.4

Reader::GoRead () {

Writer::GoWrite () {
mutexWcount.Lock();
if (writerCount++ == 0)

mutexRcount.Lock();
semaWriterPending.Wait();
if (readerCount++ == 0)
// Tirst reader blocks writers
semaW.Wait();
semaWriterPending.Release();
// pending writer gets unblocked here
mutexRcount.Unlock();

// read object

mutexRcount.Lock();

// last reader unblocks writers

if (--readerCount == 0)
semaW.Release();

mutexRcount.Unlock();

semaWriterPending.Wait();
mutexWcount.Unlock();

semaW.Wait();
// write object
semaW.Release();

mutexWcount.Lock();

if (--writerCount == 0)
semaWriterPending.Release();

mutexWcount.Unlock();

 Find a problem at home

11

Chapter 5: Roadmap

5.1 Concurrency
5.2 Hardware mutex
5.3 Semaphores

5.4 Monitors

5.5 Messages

5.6 Reader-Writer
Performance

12

Windows APls

« GetCurrentProcess() and GetCurrentProcessid()
- Return a handle and PID, respectively

» EnumProcesses(), OpenProcess()
- Enumerates PIDs in the system, opens access to them

« TerminateProcess() kills another process by its handle
- ExitProcess() voluntarily quits (similar to C-style exit())

* GetProcessTimes()
- Time spent on the CPU (both in kernel-mode and user-mode)

« Available resources
- GlobalMemoryStatus(): physical RAM, virtual memory
- GetActiveProcessorCount(): how many CPUs

« CPU utilization: see cpu.cpp in sample project "

CRITICAL_SECTION cs;

P rf InitializeCriticalSection (&cs);
ernormance /7 mutex.LockO)
R EnterCriticalSection (&cs);

// mutex.Unlock()

LeaveCriticalSection (&cs);

« WaitForSingleObject
- Always makes a kernel-mode transition and is pretty slow
- Mutexes, semaphores, events all rely on this API

« A faster mutex is CRITICAL_SECTION (CS)

- Busy-spins in user mode on interlocked exchange for a fixed

number of iterations
- If unsuccessful, gives up and locks a kernel mutex

* While kernel objects (i.e., mutexes, semaphores,
events) can be used between processes, CS works
only between threads within a process

14

Performance

CONDITION_VARIABLE cv;
InitializeConditionVariable (&cv);

« Condition variables in Windows
- |n performance, similar to CS (i.e., spins in user mode)
- Secret (monitor) mutex is explicit pointer to some CS

« PC 3.0 that actually works in Windows

LeaveCriticalSection (&cs);
WakeConditionVariable (&cvNotEmpty);

pcQueue::push (Item x) { pop() IS
EnterCriticalSection (&cs); o
while (Q.isFull Q) similar
SleepConditionVariable (&cvNotFull, &cs, ...);
Q.add (xX);

 Slim RW locks

- AcquireSRWLockShared (reader)
- AcquireSRWLockExclusive (writer)

15

Performance

« Example 1. compute = in a Monte Carlo simulation

- Generate N random points in 1x1 square and compute the
fraction of them that falls into unit circle at the origin

- Probability to hit the red circle?
* This probabillity is the visible
area of the circle divided by
the area of the square (i.e., 1)
- Quarter of a circle gives us n/4

DWORD WINAPI ThreadPi (LONG *hitCircle) {
for (int i=0; i < ITER; i++) { main O {
// uniform in [0,1] _ // run N ThreadPi() threads
x = rand.UniformQ); y = rand.UniformQ; // wait to finish
if C"x +yy<1) double pi =
IncrementSync (hitCircle); 4*hitCircle/I1TER/nThreads;
} }
}

16

Pe rfo rma n Ce SetThreadAffinityMask (GetCurrentThread(),

1 << (threadlD % nCPUS));

Six-core AMD Phenom Il X6, 2.8 GHz

Two modes of operation
- No affinity set (threads run on the next available core)
- Each thread is permanently bound to one of the 6 cores

TOtal k threads IncrementSync (LONG *hitCircle) {

WaitForSingleObject (mutex, INFINITE);

: (*hitCircle) ++;
* The basic kernel Mutex Releasellutex (mitex):
}
-t~ 3.13
k = 60 k = 20K
- CPU =~ 16% — — B B
No affinity Affinity No affinity Affinity
- Requires 2 kernel-mode 384K/s | 447KIs | 278Kis | 220KIs

switches per increment
- Runs almost twice as slow with 20K threads

Performance

« AtomicSwap
- nt~ 3.1405

- CPU = 100% (locks up
the computer)

- Unable to start more than

LONG taken = O; // shared flag
IncrementSync (LONG *hitCircle) {
while (InterlockedExchange (&taken, 1)
== 1)
C*hitCircle) ++:
taken = 0;
by
k =60 k = 20K
No affinity Affinity No affinity Affinity
448K/s 485K/s — —

/K threads since the CPU is constantly busy

« AtomicSwap and yield

- When cannot obtain mutex,
yield to other threads if
they are ready to run

- n~ 3.1412

- CPU = 100%, but computer
much more responsive

LONG taken = O; // shared flag
IncrementSync (LONG *hitCircle) {

while (InterlockedExchange (&taken, 1)

== 1)
SwitchToThread();

(*hitCircle) ++;

taken = 0;
by

k=60 k = 20K
No affinity Affinity No affinity Affinity
6.8M/s 6.8M/s 12M/s 11.9M/s

18

Performance

« CRITICAL _SECTION
-t~ 3.1417
- CPU = 36%
* |nterlocked increment
- T~ 3.1416
- CPU =100%
- Fastest method so far
* No sync (naive approach)
- CPU =100%
- Concurrent updates lost

due to being held in
registers and cache

CRITICAL_SECTION cs;

IncrementSync (LONG *hitCircle) {
EnterCriticalSection (&cs);
(hitCircle) ++;
LeaveCriticalSection(&cs);

ks
k =60 k =20K
No affinity Affinity No affinity Affinity
6.9M/s 15.9M/s 7.3M/s 12.8M/s

IncrementSync (LONG *hitCircle) {
InterLockedIncrement (hitCircle);

ks
k =60 k = 20K
No affinity Affinity No affinity Affinity
19.4M/s 19.2M/s 19.1M/s 19.0M/s

IncrementSync (LONG *hitCircle) {

ChitCircle)++;
¥
k =60 k =20K
No affinity Affinity No affinity Affinity
25.5M/s 19.9M/s 20.6M/s 20.2M/s
n~ 1.21 n~ 1.03 n~ 0.96 n~ 1.33

19

Performance

* No sync (correct
approach)
- T~ 3.1415

DWORD WINAPI ThreadPi (LONG *hitCircle) {
LONG counter = O;
for (int 1=0; 1 < ITER; i++) {
// uniform in [0,1]
X = rand.Uniform(); y = rand.Uniform();
iIf OFx + y*y < 1)
counter ++;

by
InterlockedAdd (hitCircle, counter);

}

- 202M/s, 100% CPU, bottlenecked by rand.Uniform()

« Lessons

- Kernel mutex is slow, should be avoided

- CRITICAL_SECTION is the best general mutex

- Interlocked operations are best for 1-line critical sections
- Affinity mask makes a big difference in some cases

 |If you can write code only using local variables and
synchronize rarely, it can be 1000x faster than kernel
mutex and 10x faster than Interlocked

Performance

Example 2: unbounded producer-consumer

Producer batch = 1 | i beten: = /et

while (true) {

- Q.size() <1 WaitForSingleObject(mutex, INFINITE);
if (Q.size() > 0) {
* Producer batch = 10 x = Q-pop O
- i ¥
Q-Slze() — OO ReleaseMutex (mutex);
}
° PC 11 ReleaseMutex (mutex);
// now produce
- i WaitForSingleObject(mutex, INFINITE);
Busy spins to enter for (Int 1200 1 < batehs Bee)
_ . . Q.add (i+x);
CPU |§ hlgh; mOStIy ReleaseMutex (mutex);
spent in the kernel |2
- Worst method
. . k =600 k = 20K
In our comparison patch=1 | batch=10 | batch=1 | batch=10
660/sec 187K/sec worse worse

21

int batch; // PC 1.2

m wite (tru\Z;iEForSing leObject(sema, INFINITE);

« PC 1.2 sleeps on
semaphore
- CPU = 20%

WaitForSingleObject(mutex, INFINITE);

X = Q.pop Q;
ReleaseMutex (mutex);

WaitForSingleObject(mutex, INFINITE);
for (int 1=0; 1 < batch; i1++) {
Q.add (i+x);
ReleaseSemaphore(sema,1,NULL);

}

ReleaseMutex (mutex);

« PC 1.4 releases
semaphore in bulk
- Speed-up by 40%
over PC 1.2 with

int batch; // PC 1.4

while (true) {
WaitForSingleObject(sema, INFINITE);
WaitForSingleObject(mutex, INFINITE);
x = Q.pop Q);
ReleaseMutex (mutex);

WaitForSingleObject(mutex, INFINITE);
for (int 1=0; 1 < batch; i++)

Q.add (i+x);
ReleaseMutex (mutex);
ReleaseSemaphore(sema,batch,NULL);

batch=10
- CPU =20%
k =600 k = 20K

batch=1 batch=10 batch=1 | batch=10

275K/s 130K/s 223K/s 112K/s

PC 1.2

k =600 k = 20K
batch=1 batch=10 batch=1 | batch=10
275Kl/s 182K/s 223K/s 151K/s

PC 1.4 (hw1) 2

Performance

« PC 2.1
- Adds WaitAll

HANDLE arr[] = {sema, mutex};
while (true) {

// PC 2.1

WaitForMultipleObjects(2, arr, true,
INFINITE);

x = Q.pop Q);

ReleaseMutex (mutex);

WaitForSingleObject(mutex, INFINITE);
for (int 1=0; 1 < batch; i++)

Q.add (i+x);
ReleaseMutex (mutex);
ReleaseSemaphore(sema,batch,NULL);

int batch;

- CPU =100%
- Horrible performance
- PC 3.2-3.3 similar

« Backto 1.4

- QOver 450% faster than
1.4 for batch=10

- CPU =100%

// PC 1.4 with CS

while (true) {
WairtForSingleObject(sema, INFINITE);

EnterCriticalSection (&cs);

x = Q.pop QO:
LeaveCriticalSection (&cs);

EnterCriticalSection (&cs);

for (int 1=0; 1 < batch; i++)
Q.add (i+x);

LeaveCriticalSection (&cs);

ReleaseSemaphore(sema,batch,NULL);

k =600 k = 20K
batch=1 batch=10 batch=1 | batch=10
27K]/s 27K]/s worse worse

PC 2.1

k =600 k = 20K
batch=1 batch=10 batch=1 | batch=10
361K/s 850K/s 280K/s 1.1M/s

PC 1.4 w/CS

23

Wrap-up

« PC3.0
- CPU =100%
- Breaks down when |3

CONDITION_VARIABLE cv;
while (true) {

// PC 3.0

EnterCriticalSection (&cs);
while (Q.size() == 0)

SleepConditionVariable (&cv, &cs, ...);

X = Q.pop Q;
LeaveCriticalSection (&cs);

EnterCriticalSection (&cs);
for (int 1=0; 1 < batch; i++)
Q.add (1+x);
LeaveCriticalSection (&cs);
WakeConditionVariable (&cv);

Q is persistently small

« PC 3.1

- Uses kernel events,

while (true) {
EnterCriticalSection (&cs);
while (Q.size() == 0) {

Sleep (100); // 100 ms

}
X = Q.pop Q;

LeaveCriticalSection (&cs);

EnterCriticalSection (&cs);

// PC 3.4 (variation)

runs at 450K/s LeaveCriticalSection (&cs);
° EnterCriticalSection (&cs);
PC 34 for (int 1=0; i1 < batch; i++)
— 0 Q.add (i+x);
- CPU =30 /0 LeaveCriticalSection (&cs);
}
k =600 k = 20K
k= k = 20K
batch=1 batch=10 | batch=1 | batch=10 600 p
205K]s 5 OM/s 78K/s 7 1M/sec batch=1 batch=10 | batch=1 | batch=10
22M/s 5.9M/s 16.5M/s | 7.5M/sec
PC 3.0

PC 3.4 (hw2)

	CSCE 313-200�Introduction to Computer Systems�Spring 2025
	Updates
	Chapter 5: Roadmap
	Messages
	Chapter 5: Roadmap
	Reader-Writer (RW)
	Reader-Writer
	Reader-Writer
	Reader-Writer
	Reader-Writer
	Reader-Writer
	Chapter 5: Roadmap
	Windows APIs
	Performance
	Performance
	Performance
	Performance
	Performance
	Performance
	Performance
	Performance
	Performance
	Performance
	Wrap-up

