CSCE 313-200

Introduction to Computer Systems
Spring 2025

Synchronization

Dmitri Loguinov
Texas A&M University

February 4, 2023

Chapter 5: Roadmap

5.1 Concurrency Part Il
Appendix A.1

5.2 Hardware mutex

5 3 Semaphores Chapter 5: Concurrency

5.4 Monitors

5.5 Messages
5.6 Reader-Writer

Inter-Process Communication (IPC)

« |PC enables exchange of information between
threads/processes

 Two main approaches
- Shared memory

 Messages

- Data copied through a
kernel buffer

- Messages - OS provides exclusion
* Shared memory — Can be used between
- Primary method to pass data hosts in distributed
between threads applications (e.g., pipes,

- Much faster than messages Jebioig=oc e le)

- However, requires protection * F1P€S aIreqdy covered,
against concurrent now deal with shared-

modification to shared data memory IPC

. . class Sha_red {
Motivation It b
¥
» Most examples will be in | S"re®: Threadt O
C++ Style pSGUdOCOde Shared: :Thread2 ()
- See MSDN for detailed b += a
usage of functions :
. main
o Start with two threads Shared st;
- Shared class passed to ztg : ;
each thread CréateThread (st.Threadl)
_Th d
- Thread1 computes a+b EE?ﬁ?}Q{‘*Z‘j Sfb; readz)

and saves into a

— Thread2 does the same, * Prints (1,2) and quits
but saves into b - Need to wait for threads

« \What is the outcome? — Assuming this problem is

fixed, what is the result?
4

// initial state

Motivation xhls

* Analyze the various execution paths
- Two threads concurrently execute this:

thread 1 thread 2
Shared: :Threadl Shared: :Thread2 ()
1) a+=Db 2) b += a
« CPU trace:
ver 1 ver 2 ver 3
1) a=3, b=2 2) a=1, b =3 1) reads a,b into registers
2) a=3, b=5 1) a=4, b =3 2) reads a,b 1Into registers
main prints (3,5) main prints (4,3) 1) computes sum, saves a = 3
| | 2) computes sum, saves b = 3
| main prints (3,3)
non-deterministic result that depends on _ —
who gets there first (race condition) unintended result

(depends on compiler)

Motivation

 How about the next example
- Now both variables are modifed, threads print their values

thread 1 thread 2

Shared: :Threadl () Shared: :Thread2 ()

1) a+=Db 4) a=2%+b

2) b += a 5) b =a+ 2*

3) print (a, b) 6) print (a, b)

« CPU trace:
ver 1 ver 2 ver 3 ver 4

1) a=3, b=2 1) a=3, b=2 1) a=3, b=2 1) a=3, b=2

2) a=3,b=5 4) a=8, b =2 2) a=3,b=5 4) a=8, b =2

3) prints (3,5) 2) a=8, b=10 |4) a=11, b =5 2) a=8, b =10
4) a =11, b =5 5 a=8, b=28 |5 a=11, b =21 |3) prints (8,10)
5 a=11, b = 21 3) prints (8,28) |3) prints (11,21) 5) a=8, b =28
6) prints (11,21) 6) prints (8,28) |6) prints (11,21) 6) prints (8,28)

Generalization: for two threads

MOtivation with m and n instructions (m + ”)

respectively, the number of m
possible ways to interleave them:

« Example (cont'd)
- How many possible execution traces? For m = n = 100,

. . this is 10°°
- Build an execution tree:
symmetric
— “ subtree omitted

FETE N

ver1 ver3 ver4 ver2 7

Start
|

Motivation

Actual tree is deeper since we have to consider each
assembler-level instruction

- Even most basic ¢ = a + b may be implemented as 4 CPU
instructions: load (reg1, a), load(reg2, b), add(reg1, reg2),
store (c, reg1)

- Also could be load(reg, a), add(reg, b), store (c, reg)
Because of this, synchronization bugs may be
compiler-specific

- Some may only appear in debug or release mode

Conclusion: proper synchronization is mandatory for
access to shared memory

However, not all access needs protection
- Required only if data is modified by“at least one thread

8

Terminology

* Critical section

— Piece of code that is
sensitive to concurrent
events in other threads

 Critical sections require
synchronization to
exclude other threads
from damaging data

» Atomic operation

- Set of instructions that
cannot be interrupted by
another thread

Shared::Thread ()
a++

Single CPU instruction is
always atomic
- |s the code above safe?

Nope, L2/L3 cache
coherency problems on
multi-core platforms

- Result unpredictable

Also, compiler may split this
iInto multiple instructions

- Possible in debug mode

Deadlock

- Infinite wait for events
or some conditions .

d
D
£
%)
=
X
O
O
i~
©
@
o

Terminology

e Livelock

- Non-stop activity that typically
changes shared state, but
makes no progress

- Unlike deadlock, which makes
no change to shared variables
« Elevator example:

- Every time a button is pressed,
elevator responds by moving
towards the floor where it was
pressed

- New button commands
preempt old ones

- Selfish customers

floor 1

11

Shared::Thread ()

_Termin0|og! ZﬂfeXA-LOCkO // enter

MutexA.Unlock() // leave
// do some work here
MutexB.Lock() // enter

 Mutual exclusion (mutex) b
C +=
- Data structure that allows MutexB.Unlock() // leave

only one thread in its critical
section at one time

* Busy-spinnin
* Multiple critical sections . g

- A while loop that tests

W|th|n a thread pOSS|b|e Variab|e(s) until some
e Race condition condition is reached

- Situation where the outcome ~ — Notused often in user
depends on the order of space, but parts of the
thread execution kernel rely on it

- Hw1-part3: robots race to Work starvation
find the exit; found solution is - Certain threads are
non-deterministic under-utilized (ready to

- Sometimes acceptable run, but no work) 2

Terminology

» Work starvation (cont'd)

- Caused by unbalanced job
partitioning or OS scheduler
giving less CPU time to
certain threads

* Assuming the OS is well-

designed, only the former
Issue is of concern

 Examples

- Hw1-part3: one thread
deposits new rooms in the
queue, then immediately
grabs them all back for
exploration

- Threads sort keys
concurrently, where
thread | gets keys whose
upper Kk bits are i

Does this search loop
require a mutex:

while (exit not found)

x = U.popQ);
Expore(X);

- Yes since U.pop()
modifies the underlying
data structure

Should Explore(x) be

inside a mutex? .

	CSCE 313-200�Introduction to Computer Systems�Spring 2025
	Chapter 5: Roadmap
	Inter-Process Communication (IPC)
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Terminology
	Deadlock Illustrated
	Terminology
	Terminology
	Terminology

