CSCE 313-200

Introduction to Computer Systems
Spring 2025

Synchronization |l

Dmitri Loguinov
Texas A&M University

February 6, 2025

Chapter 5: Roadmap

5.1 Concurrency
Appendix A.1

5.2 Hardware mutex
5.3 Semaphores

5.4 Monitors

5.5 Messages

5.6 Reader-Writer

Mutex

* Where to get mutex
functionality?

 Two options
- Make the kernel do it
- Implement in user space

e Techniques are similar
with a few exceptions
- Some may require
privileged instructions
* Next, we'll review
classical algorithms and
hardware support

 For now, assume
- Each C line is atomic
- No caching

« Use global variables for
simplicity of explanation

e Mutex v1.0: naive

taken = false
Mutex.Lock O {
while (taken == true)

taken = true // we own mutex
}
// -
Mutex.Unlock (O){

taken = false

}

* Any problems?

Mutex

Main issue: » Mutex v2.0: Strict
 Read followed by write is alternation
not an atomic operation! - Do not enter until
» Two threads arrive access Is granted by
other threads

simultaneously to mutex

- Both check and see that |7/ N = number of threads

turn = 0O

taken is false Mutex.Lock (i){
_ _ while (turn ! = 1)
- Both proceed inside : /7 do nothing
// someone gave us the turn
 Result |
- Failed mutual exclusion Mutex.-Unfock OA

turn = (turn + 1) % N

« Can we do better? ¥

* Problems?

Mutex

Drawbacks of Mutex 2.0 + Mutex 2.0: only person
 Threads forced to own holding a token can
mutex even if not needed ask question
- Wait time can be - When question asked,
arbitrarily high token is passed to

next person

« Correct mutex: raise
your hand if you have
a question
- |nstructor finishes
sentence, selects the

order in which raised
hands are polled 5

Classroom analogy

 No mutex: ask question
as soon as ready

- Keep talking concurrently
with instructor and other
students asking their
guestions

Mutex

Mutex v3.0
- Consider just two threads

Mutex v3.1
- Need to break ties

- Dekker's algorithm (1965)
for two threads

bool want [2] = {false,false}
Mutex.Lock (i1){

J = 1-1 // other threadlD

want [1] = true

while (want [j] == true)

; // do nothing

by
// -
Mutex.Unlock (1){

want [1] = false
by

* Only one thread can enter

- But deadlock possible if
both want it at same time

bool want [2] = {false,false}
int turn = 0 // break ties
Mutex.Lock (i1){
J = 1-1 // other threadlD
want [1] = true
whille (want [j] == true)

{
1T (turn == j)
{
want [1] = false
while (turn == j)
; // do nothing
want [1] = true
by
by
by
// -

Mutex.Unlock (1){
turn = 1-1
want [1] = false

}

M e Mutex v3.2

- Petersen’s algorithm

* Mutex 3.1 guarantees that (1981) for two threads
only one thread enters
L . bool want [2] = {false,false}
- Deterministically avoids int turn /7 break ties
deadlock and inconsistency | "} L0t Ciner threadin

. t 1] =t
¢ Only Competlng threads are ﬁi?n EI} rﬁ? give away turn

while (want [j] == true

given access to mutex 8& turn == §)
. . ; // do nothing
- Efficient }/
Drawbacks Mutex.Unlock (i){

want [1] = false

* Pretty complex ¥

« Lack of fairness: one thread - Fair, efficient, consistent
may enter multiple times
while the other is waiting

Mutex

Mutex v3.2 without contention

bool want [2] = {false,false}
int turn // break ties
Mutex.Lock(0) {
@ want [0] = true
@ turn = 1 // give away turn
@ while (want [1] == true
&& turn == 1)

@ // owns mutex
}
// -
Mutex.Unlock (0){

@ want [0] = false

bool want [2] = {false,false}
int turn // break ties
Mutex.Lock(1l) {
@ want [1] = true
@turn = 0 // give away turn
@ while (want [0] == true
&& turn == 0)

@ // owns mutex
by
// -
Mutex.Unlock (1){
want [1] = false

}

}

want[0]

turn

true

want[1]

Mutex

« Mutex v3.2 with contention

bool want [2] = {false,false}
int turn // break ties
Mutex.Lock(0) {
@ want [0] = true
@ turn = 1
@ while (want [1] == true
&& turn == 1)

@ // owns mutex
}
// -
Mutex.Unlock (0){
want [O] = false
}

bool want [2] = {false,false}
int turn // break ties
Mutex.Lock(1l) {
@ want [1] = true
@turn = 0
@ while (want [0] == true
&& turn == 0)

@ // owns mutex
by
// -
Mutex.Unlock (1){

@ want [1] = false
}

true
want[0]

turn want[1]

Mutex

 Mutex v3.2 avoiding starvation/unfairness

bool want [2] = {false,false}
int turn // break ties
Mutex.Lock(0) {
@ want [0] = true
@ turn = 1
@ while (want [1] == true
&& turn == 1)

@ // owns mutex
}
// -
Mutex.Unlock (0){
want [O] = false
}

bool want [2] = {false,false}
int turn // break ties
Mutex.Lock(1l) {
@ want [1] = true
@turn = 0
@ while (want [0] == true
&& turn == 0)

@ // owns mutex
by
// -
Mutex.Unlock (1){

@ want [1] = false

}

true
want[0]

o

turn want[1]

10

Mutex

« Mutex v3.2 with reversed order of want and turn
- Allows both threads to enter

bool want [2] = {false,false}

int turn // break ties
Mutex.Lock(0) {
@ turn = 1

@ want [0] = true
@ while (want [1] == true
&& turn == 1)

@ // owns mutex
}
// -
Mutex.Unlock (0){
want [O] = false

}

bool want [2] = {false,false}

int turn // break ties
Mutex.Lock(1l) {
@turn =0 @

@want [1] = true
@ while (want [0] == true
&& turn == 0)

@ // owns mutex
¥
// -
Mutex.Unlock (1){
want [1] = false
by

true
want[0]

true

turn want[1]

11

Mutex Summary

Mutex v3.2 on modern e CPU cache coherency
computers

- - Shared variables stored
 Compiler optimization A in L1/L2 caches of

- Compiler sees that the different cores
loop does not change
any variables

 CPU memory fetch

| - Hardware may reorder
- Removes it from code read/write operations
« Compiler optimization B — Major problem for all

- Variables may be kept algorithms:

In reQISterS fOr IOOp // intended sequence // actual

duration or order of |write want[i]

. read want[j]
operations changed | read turn

sequence
read want[j]
read turn

write want[i]

12

Chapter 5: Roadmap

5.1 Concurrency
5.2 Hardware mutex
5.3 Semaphores

5.4 Monitors

5.5 Messages

5.6 Reader-Writer

13

Hardware Mutex

« Without CPU support, mutual exclusion is impossible

* One seemingly good approach is to disable interrupts

- Assembler instructions cli (clear interrupts) and sti (set
interrupts)

_asm { cli1 }
// modify mutex variables
__asm { sti1 }

« May work fine on single-CPU hardware, but is

unsuitable as a general solution
- Privileged instruction, only the kernel can use
- Masked interrupts on one CPU do not affect others

- Cache coherency issues not resolved

14

Hardware Mutex

« A more powerful approach is to employ instructions
that lock the memory bus and synchronize caches

- CPU has to support this
 Now mutex v4.0

taken = 0
Mutex.Lock O {

while (AtomicSwap (&taken, 1) == 1)

// owns mutex

+
Mutex.Unlock O

taken = 0O;

int AtomicSwap (int *ptr, int val) {

__asm {
mov eax, val
xchg eax, [ptr]
ret eax
by
by
—

xchg is always locked

* Another low-level primitive is Compare & Swap (CAS)

- Compares the target to some constant, swaps if equal
- Maps to assembler instruction CMPXCHG

15

Hardware Mutex

taken = 0
Mutex.Lock () {
i want = 0; newValue = 1
. // CAS returns the old value

* MUteX V41 USIng CAS while (CASU(&taken, newxalﬁe, want) = want)
« Avoids useless writes /7 owns mutex

}

- Other use cases? Mutex.Unlock)
taken = O;

Example where

AtomicSwap doesn’t work

InterlockedExchange = AtomicSwap
— Suppose taken can be 0-2 InterlockedCompareExchange = CAS
InterlockedIncrement = a++
- |f O set it to 1 InterlockedDecrement = a--
! InterlockedAdd = a + constant
- - g InterlockedXor = a ©~ constant
If 1’ Set tO 2’ If 2’ Set tO O InterlockedAnd = a & constant
. InterlockedOr = a | constant
L WlndOWS APIS InterlockedBitTestAndSet = set bit to 1
_ _ InterlockedBitTestAndReset = set bit to O
- Several versions: 32-bit, 64-]
bit, and pointers all of these use

32-bit destinations
16

Hardware Mutex

e Mutexes 4.0-4.1 are e More common is to call a
called spinlocks kernel-level mutex
e Internally, OS uses them — User thread is blocked until

its event is signaled
- Useful for large critical
sections and I/O operations
* As the event is signaled

- Threads are unblocked in
FIFO order (unless priorities
dictate otherwise)

- Specific APls will be
discussed next week

to mutex against itself
- Tiny critical sections make
this acceptable
* At user level, spinlocks
are used rarely

- Mostly to achieve extreme
levels of performance

- We’ll have benchmarks
later in this chapter

17

Chapter 5: Roadma

5.1 Concurrency
5.2 Hardware mutex
5.3 Semaphores

5.4 Monitors

5.5 Messages

5.6 Reader-Writer

18

class Semaphorel {

Semaphore O wos 11 operations

}

* Perhaps one of the most useful synchronization
constructs was invented by Dijkstra in 1965

* Definition: semaphore v1.0 is a class shared between
threads/processes that admits two atomic operations:

Semaphorel::P() { Semaphorel::V(Q) {
S-- S++
iIT (s <0) iIT (s <=0)
// block current thread // unblock one waiting thread
+ +
: .
also called Lock or Wait also called Unlock or Release

« This version allows the state to be negative
- Does not set any limits on its maximum or minimum value

- Potential overflow issues

class Semaphore2 {
int S;

// current state
Semaghore int maxs; // max value
List blocked; // pending threads
PO: VO // operations

}

« Semaphore v2.0 avoids incrementing s when there are
pending threads and adds an upper bound on s

Semaphore2::P() { // inside kernel
iIT (s >0)
S--,
else
t = GetCurrentThread()
blocked.add (t)
// block thread t

}

Semaphore2::V() { // inside kernel
1T (blocked.size() > 0)
t = blocked.remove()
// unblock thread t
else

s = min (s+1, maxS);

* Dijkstra defined semaphore 1.0 (abstract concept)

« Windows semaphores are 2.0 (kernel-mode)
- Unless specified otherwise, assume this type
- Initial state and max are set during creation

20

class Semaphore3 {

Semagho_re hiﬂﬁiex 2 // current state

PO: Vi); // operations
¥

« POSIX semaphore v3.0 does not ensure that both
operations P() and V() are atomic
- Instead, it uses an internal mutex

Semaphore3::P(QO { // user mode
m.Lock() Semaphore3::V(Q) { // user mode
while (s <= 0) m.Lock O
m.Unlock() S++;
sleep m.Unlock(Q)
m.Lock(); }
S__
m.Unlock()
}

« Semaphore 3.0 does not enforce any order in which
competing threads acquire semaphore
- Potential for starvation/unfairness

* Inefficient due to sleep-spinning, slow reaction time?

Semaphore

Semaphore semaX = {15, 15}; // (s,max)
Thread () {

semaX.Wait(Q); // P
// critical section
semaX.Release(); 7/ V

 Examples:

I—l
allows up to 15 concurrent
threads in some section

Semaphore semaX = {0, 1}; // (s,max)
Threadl (O {

semaX.Wait(Q); // P

}

I_I
thread1 waits for thread?2

Semaphore semaX = {0, 1}; // (s,max)
Thread2 () {
// initialize stuff
semaX.Release(); // V

to finish initialization

{0, 1}; 7/ (s,max)
{0, 1}; 7/ (s,max)

Semaphore semaX
Semaphore semaY
Threadl (O {
// initialize stuff
semaX.Wairt(); // P
semaY¥Y.Release(); // V

{0, 1}; 7/ (s,max)
{0, 1}; 7/ (s,max)

Semaphore semaX
Semaphore semaY
Thread2 () {
// initialize stuff
semaY.Wait(); // P
semaX.Release(); // V

I_|

deadlock

22

Semaphore

« Examples (cont'd):

Semaphore semaX = {0, 1}; // (s,max)
Semaphore semaY = {0, 1}; // (s,max)
Threadl () {
// initialize stuff
semaY¥Y.Release(); // V
semaX.Wairt(); // P

Semaphore semaX = {0, 1}; // (s,max)
Semaphore semaY = {0, 1}; // (s,max)
Thread2 () {
// initialize stuff
semaX.Release(); // V
semaY.Wait(); // P

l_I
both threads wait for

the other to initialize

 Most common use of semaphores: allow entry of < s
concurrent threads into some section of the code

« Definition: a semaphore is called binary if max = 1 and
counting (general) otherwise

23

Wrap-up

« Some kernels (e.g.,

* Deifinition: a semaphore windows) run semaphore
is called strong If it queues through the CPU
unblocks threads in scheduler

FIFO order and weak

- This makes them weak, but

otherwise only to the extent of yielding
« Semaphore v1.0 to higher-priority threads
—~ Not detailed enough to - Thus, if user threads all
determine have the same priority, their

unblocking order relative to
each other is approx FIFO

« Semaphore v3.0

« Semaphore v2.0:

- |f internal data structure
Listis a FIFO queue,

then it is strong - Weak

24

	CSCE 313-200�Introduction to Computer Systems�Spring 2025
	Chapter 5: Roadmap
	Mutex
	Mutex
	Mutex
	Mutex
	Mutex
	Mutex
	Mutex
	Mutex
	Mutex
	Mutex Summary
	Chapter 5: Roadmap
	Hardware Mutex
	Hardware Mutex
	Hardware Mutex
	Hardware Mutex
	Chapter 5: Roadmap
	Semaphore
	Semaphore
	Semaphore
	Semaphore
	Semaphore
	Wrap-up

