CSCE 313-200

Introduction to Computer Systems
Spring 2025

File System Il

Dmitri Loguinov
Texas A&M University

March 27, 2025

Chapter 11: Roadmap

11.1 1/0O devices

11.2 1/O function

11.3 OS design issues

11.4 1/O buffering

11.5 Disk scheduling

11.6 RAID

11.7 Disk cache

11.8-11.10 Unix, Linux, Windows

Do b B2 e
RAID EEEE
L8 9 §

10 11
12 13 14 15
 Redundant Array of . RAID-0
Inexpensive Disks (RAID) S
- Nowadays “I” is Independent | | 0 0 1]
» RAID-O (striping) B
- Non-redundant sequential 6 6 7
writing to all disks RAID-1
- Goes in units of some fixed T
block size (e.g., 64 KB) « RAID-1 (cont'd)
- R/W speed N*S for N disks - R/W speed N*S/2
- Any failure renders array — Tolerates single disk
unusable, all data lost failure, may survive up
* RAID-1 (mirroring) to N/2 failures, but may

also crash with just 2

- One spare for each disk

KNI 2 | | po2
RAID L] B
_6 |

RAID-2 and 3 G Mot (o
< an o _RAID-4
- Require synchronized disks e
i i 0 1 2 PO-2
Not popular in practice 1 ; — .
* AllRAID levels 4+ compute || "¢ | |rss | 07| [8 |
block/stripe parity LPe-11) (19 10 L1
- Usually an XOR of all blocks | RAID-5 =
- Failure of a disk allows ... _
recovery of block by XORing ° RAID=5
parity with remaining blocks - Parity split over all disks
« RAID-4 - Read speed S*(N-1)

- Tolerates failure of any
single disk, crashes if 2
or more fail concurrentl)él1

- Bottlenecks on parity disk (e.g.,
modification of blocks 2 and 6
cannot proceed in parallel)

RAID

* RAID-6 .
— Dual parity, read speed S*(N-2)

— Tolerates failure of any 2 disks, 7T :
crashes if 3 or more falil RAID-5

- On some cards, write speed
30% slower than RAID-5

* RAID-XY or X+Y
- Several RAID-X arrays 5
organized into a RAID-Y . RAID-50

* Windows also offers a
spanned volume in software

- Writes to one disk until full, then
switches to the next > ’

RAID-0

Chapter 11: Roadmap

11.1 1/O devices

11.2 1/O function

11.3 OS design issues

11.4 1/O buffering

11.5 Disk scheduling

11.6 RAID

11.7 Disk cache

11.8-11.10 Unix, Linux;Windows

Disk Cache

* |n caching, the main issue is achieving high hit rates

* Classical LRU (Least Recently Used)
- Evict the item that hasn’t been used the longest

 |n practice, doubly-linked queue/list is enough

- Most-recent items inserted at the tail, old evicted at the head
tail head tail head

X A - B X | g
insertion of A is accessed,
|_I B evicts Z V_I moves to front
newest oldest newest oldest of list, nobody
evicted
tail head

A B “ » How to quickly find accessed
- item in the queue?

newest oldest . .
- Linear'scanning is slow 7

Disk Cache

* |dea: maintain a hash table that stores a pointer to the
item’s location in the queue/list

* How to update the hash table during eviction?
- Either look up item in hash table or store a reverse pointer

hash table

LRU queue/list

qﬁEE

no need to store items in both hash table and LRU queue

Disk Cache

* Age and frequency of usage may not be related
- More accurate method may be LFU (Least Frequently Used)
- Assign counter C to items, how often it has been accessed
- Sort items by C, evict the one with the smallest counter

* Requires a min-heap ordered by access counters
heap hash table

-
-

Disk Cache

LFU complexity

- O(1) for cache hit, logN for reinsertion (existing item)

- O(1) for cache miss, logN for eviction (new item)

Could also use a balanced binary search tree

- Left-most child is always evicted counter linked list

Another approach: organize 1 o 5 o

O

counters into doubly-linked list m 3

- Each counter has a list of nodes

that tie for their value of C L !

- Nodes contain pointers to actual items 3 T

which are part of the hash table as before
ptr to X ptr to A

Constant-time access/insertion/eviction

10

Disk Cache

 Problem #1: LFU is biased against new items, which it
may evict immediately after insertion
- As an improvement, evict every K cache requests and use
LRU within each linked list of nodes that have the same C
* Problem #2: items with large counters
stay virtually forever in the cache

- Suppose an item gets 1M initial hits due
to locality, but is never needed again

- |t will not get evicted until C = 1M is
the smallest counter in the heap/list
« Goal: prevent fresh items from being immediately
evicted and discount the importance of back-to-back
access 11

Disk Cache

* Hybrid LRU-LFU methods

- Attempt to register only long-term usage

 New section is similar to LRU
- Iltems move to the tail on access, counters unchanged
- Eviction moves from the head to the old section

* Old section is similar to LFU, sorted by counter
- Hits increment C and move item

to tail of new section
m—> evicted

old section 12

Disk Cache

e Research suggests that the LFU (old) section is still
biased against new blocks, evicts them right away

e Solution: create a middle section to build up counters

- On hits, middle-aged items increment counters and move to
the tail of new section

- When item is old, its C should reflect its long-term usage
middle section

| becomes middle-aged m—’ evicted

old section 13

becomes old

Chapter 12: Roadmap

12.1 Overview

12.2 File organization

12.3 Directories

12.4 Sharing

12.5 Record blocking

12.6 Secondary storage

12.7 File security

12.8-12.10 Unix, Linux;Windows

14

File Organization

As before, a file is just a bunch of bytes

Our next task is to figure out how to organize these
bytes within the file to enable ease of operation

- Mostly concerned here with data lookup and retrieval

Assume data is split into items/records
- Each record has multiple fields (e.g., name, age, SSN)

1) Pile is the most general

D, | error, | driver,

- Records dumped into file as they -
become available to the program, | P2 Sl driver,

in no particular order, \n separator | D, | RAM | CPU

- Different records may have different
length or # of fields, typically read by humans

- e.g., Unix syslog file into which all kernel modules write 15

File Organization

2) Sequential file (sorted or unsorted)
- One field in each record is the key, everything else is value
- Search for a given key or range W salary, | age,

Fixed-size fields S salary, | age,
- E.g., payroll database with all fields padded to same size

Variable-size fields deg, list,

- E.g., graph (key = nodelD, BEEEN deg, | list

value = degree + adjacency list)
If sorted by key
- |f fixed-size values, binary search to find records

- |If variable-size, need unambiguous record separators
- Painful to add elements as resorting the file is expensive

16

File Organization

e 3) Indexed Sequential

- File structure that has the main file with data (usually huge)
and a separate file containing the index for keys

* Suppose the main file is Google’s word—>URL mapping
- Query maps hashes of words to pages with them

url, | url,

url, | url, [urly | ... | urlg,

url, | url, | url,

« Binary search on the index, find offset in main file

17

File Organization

 Ifindex is too big to fit in RAM and binary search is
inefficient, a k-level index is possible

500 off off B
| | 600 off off
level-3: 10 GB ! L : : 3
fits in RAM i . level-2: 100 GB . level-1: 10 TB

« Assume level-1 index size F, read I/O block size B
- Binary search needs log,(F/B) seeks
- On the other hand, k-level index needs k-1 seeks

« F=10TB file, B=1 MB block size — 23 seeks, while
multi-index above does it in k-1 =2 seeks '

File Organization

* 4) Indexed

- Separate index for every possible field, allows database-like
operations on fields

« Main challenge for indexed files is keeping the index
updated when it doesn't fit in RAM

5) Hashed file
- Treat file contents as RAM, hash items directly to some offset

uint64 N; // hash table size

// preallocate file of size N * sizeof(item)

void Hash (ltem x) {
off = HashFunction (x.key) % N;
Tfile_Seek (off * sizeof(ltem));
Tile_Write (&x, sizeof(ltem));

}

What to do with collisions?
19

	CSCE 313-200�Introduction to Computer Systems�Spring 2025
	Chapter 11: Roadmap
	RAID
	RAID
	RAID
	Chapter 11: Roadmap
	Disk Cache
	Disk Cache
	Disk Cache
	Disk Cache
	Disk Cache
	Disk Cache
	Disk Cache
	Chapter 12: Roadmap
	File Organization
	File Organization
	File Organization
	File Organization
	File Organization

