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•
 

Deadlock is a permanent (infinite) wait for resources 
━

 

Important problem in the field of synchronization
•

 
Typical example with threads P and Q:
━

 

Two mutexes locked in different order
━

 

Common source of deadlocks in more general cases
•

 
Another example:

PrinciplesPrinciplesPrinciples
ThreadP () {

mutexA.Lock();
mutexB.Lock();
// critical section
mutexA.Unlock();
mutexB.Unlock();

}

ThreadP () {
mutexA.Lock();
mutexB.Lock();
// critical section
mutexA.Unlock();
mutexB.Unlock();

}

ThreadQ () {
mutexB.Lock();
mutexA.Lock();
// critical section
mutexB.Unlock();
mutexA.Unlock();

}

ThreadQ () {
mutexB.Lock();
mutexA.Lock();
// critical section
mutexB.Unlock();
mutexA.Unlock();

}

A

C

B

D

CarNorth () {
mutexA.Lock();
mutexC.Lock();
// drive
mutexA.Unlock();
mutexC.Unlock();

}

CarNorth () {
mutexA.Lock();
mutexC.Lock();
// drive
mutexA.Unlock();
mutexC.Unlock();

} CarWest () {
mutexC.Lock();
mutexD.Lock();
// drive
mutexC.Unlock();
mutexD.Unlock();

}

CarWest () {
mutexC.Lock();
mutexD.Lock();
// drive
mutexC.Unlock();
mutexD.Unlock();

}
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•
 

Example (cont’d): deadlock possible
 

in general and...
━

 

Certain
 

when each grabs their first mutex:
•

 
Conditions for a deadlock

 to be possible
━

 

1) Mutual exclusion (no sharing)
━

 

2) Hold and wait (allowed to hold one 
resource and wait for another, i.e., 
acquisition of multiple mutexes is not atomic)

━

 

3) No preemption (held resources not released until critical 
section has been successfully completed)

•
 

Conditions for it to be certain
━

 

1)-3) plus 4) circular wait

PrinciplesPrinciplesPrinciples

A

C

B

D
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•
 

Assume two threads P and Q in parallel execution
━

 

Denote by t the absolute time
━

 

Progress diagram
 

is a 2D parametric curve (x(t),y(t)) where 
x(t) is the number of instructions executed by Q and y(t) by P

Progress DiagramProgress DiagramProgress Diagram

thread Q 
timeline

thread P 
timeline

prints Y

prints X

prints Z

Curves must be 
monotonically 

non-decreasing in 
both axes

X, Y, Z

Y, X
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•
 

Back to our example with P and Q
•

 
Mutexes

 
place

 
L-shaped

 
obstacles/barriers on the 

progress diagram that cannot be crossed

Progress DiagramProgress DiagramProgress Diagram

ThreadP () {
mutexA.Lock();
mutexB.Lock();
// critical section
mutexA.Unlock();
mutexB.Unlock();

}

ThreadP () {
mutexA.Lock();
mutexB.Lock();
// critical section
mutexA.Unlock();
mutexB.Unlock();

}

ThreadQ () {
mutexB.Lock();
mutexA.Lock();
// critical section
mutexB.Unlock();
mutexA.Unlock();

}

ThreadQ () {
mutexB.Lock();
mutexA.Lock();
// critical section
mutexB.Unlock();
mutexA.Unlock();

}

B.lock

B.unlock

B.lock B.unlock
A.unlock

A.lock

A.lock

A.unlock

safe

safe

P

Q
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•
 

In three quadrants 
near the origin, 
deadlock possible
━

 

In the fourth,
 

it 
is

 
certain

•
 

All other sections 
are safe
━

 

Except impossible
 states behind barriers 

•
 

Static or dynamic analysis to detect deadlocks
•

 
What happens with N threads?
━

 

N-dimensional diagram

Progress DiagramProgress DiagramProgress Diagram

A.lock

B.lock

A.unlock
B.unlock

A.lockB.lock
A.unlock

B.unlock

possible possible

possible certain

safe?

P

Q
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•
 

How about 
these diagrams?

•
 

In what order are 
mutexes acquired?
━

 

Write pseudo code for P/Q

Progress DiagramProgress DiagramProgress Diagram
P

Q

P

Q

P

Q
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•
 

To visualize deadlocks, often a graph is drawn between 
all threads and resources
━

 

Edges of this bipartite graph are labeled with “held by”
 (resources  threads) and “wants”

 
(threads  resources)

•
 

If this directed graph has a cycle, there is a deadlock
━

 

Car labels (N, E, W, S) map to North/East/West/South position

Resource Allocation GraphResource Allocation GraphResource Allocation Graph

AA BB CC DD resources

threads

wants

held by

N E W S
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•
 

Yet another famous synchronization problem
━

 

Proposed by Dijkstra in 1965
•

 
N

 
philosophers are sitting at a round table with N 

forks between them
━

 

Usually N = 5 and the food is 
spaghetti, but this is not essential

•
 

Each thinks for a random 
period of time until becoming 
hungry, then attempts to eat
━

 

Food requires usage 
of both

 
adjacent forks

Dining PhilosophersDining PhilosophersDining Philosophers



12

•
 

Operation of a philosopher (each 
is a separate thread 0 ·

 
i ·

 
N-1)

•
 

Forks are labeled 0 to N-1 as well

•
 

Basic approach DPH v1.0:

•
 

When all are hungry, deadlock is possible

Dining PhilosophersDining PhilosophersDining Philosophers
Philosopher (int i) {

while (true) {
Think ();
GrabForks (i);
Eat ();
DropForks(i);

}
}

Philosopher (int i) {
while (true) {

Think ();
GrabForks (i);
Eat ();
DropForks(i);

}
}

Mutex mutexFork[N];  // one for each fork

DropForks (int i) {
mutexFork[i].Unlock();
mutexFork[(i+1)%N].Unlock();

}

Mutex mutexFork[N];  // one for each fork

DropForks (int i) {
mutexFork[i].Unlock();
mutexFork[(i+1)%N].Unlock();

}

Mutex mutexFork[N];  // one for each fork

GrabForks (int i) {
mutexFork[i].Lock();  // right fork
mutexFork[(i+1)%N].Lock(); // left fork

}

Mutex mutexFork[N];  // one for each fork

GrabForks (int i) {
mutexFork[i].Lock();  // right fork
mutexFork[(i+1)%N].Lock(); // left fork

}

00 11
22

44
33

00 11

22

33

44
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•
 

In deadlock prevention, the algorithm is modified by 
programmer to

 
make one of the 4 conditions leading 

to deadlock impossible
•

 
Condition #1: mutual exclusion
━

 

Typically cannot be safely eliminated (e.g., cars cannot drive 
on top of each other thru intersection)

•
 

Condition #2: hold and wait
━

 

Can be overcome with WaitAll, DPH v1.1

━

 

Besides speed, main drawback is that all needed mutexes 
must be known ahead of time and acquired in bulk

PreventionPreventionPrevention

Mutex mutexFork[N];  // one mutex for each fork

GrabForks (int i) {
WaitAll (mutexFork[i], mutexFork[(i+1)%N]); // both forks

}

Mutex mutexFork[N];  // one mutex for each fork

GrabForks (int i) {
WaitAll (mutexFork[i], mutexFork[(i+1)%N]); // both forks

}

WaitAll

 

is either super slow

 
(Windows) or absent (Unix)
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•
 

Condition #4: circular wait
━

 

Design algorithm such that a circular deadlock cannot occur
•

 
Notice that presence of 3 or fewer cars (4 or fewer 
philosophers) cannot cause a cyclic wait graph
━

 

Use a semaphore to control how many at the table
•

 
Q: how many can eat concurrently?
━

 

If only bN/2c, why allow all N to grab forks? 

•
 

How many should be allowed to use forks?
━

 

To achieve max concurrency, N-1, but …
━

 

Algorithm
 

is prone
 

to persistent chains of waits:

PreventionPreventionPrevention

Pi

 

(eat)Pi

 

(eat) Pi+1

 

(wait)Pi+1

 

(wait) Pi+2

 

(wait)Pi+2

 

(wait) Pi+k

 

(wait)Pi+k

 

(wait)…
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•
 

Suppose T > 0 is the eat+think
 

delay in seconds
━

 

Max theoretical rate of algorithm is N / 2 * 1 / T
━

 

If T = 0, then mutex locking/unlocking is the bottleneck

•
 

Elegant semaphore solution, but slow
━

 

T=0: kernel-mode semaphore kills performance
━

 

T=100ms: prone to sequential chains of waits, in which case 
performance may deteriorate to 1/T = 10 per

 
second

━

 

Improves if think delays are random (1700/sec), or 
semaphore

 
starts at N/2

 
(1900/sec)

PreventionPreventionPrevention

CRITICAL_SECTION cs[N];  // one mutex for each fork
HANDLE sema = CreateSemaphore (..., N-1, N-1, ...); 

GrabForks (int i) {
WaitForSingleObject (sema, INFINITE);
EnterCriticalSection (&cs[i]);
EnterCriticalSection (&cs[(i+1)%N]);

}

CRITICAL_SECTION cs[N];  // one mutex for each fork
HANDLE sema = CreateSemaphore (..., N-1, N-1, ...); 

GrabForks (int i) {
WaitForSingleObject (sema, INFINITE);
EnterCriticalSection (&cs[i]);
EnterCriticalSection (&cs[(i+1)%N]);

}

T=0

 
450K/sec N = 5

T=100ms

 
10/sec N = 500

DPH v1.2
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•
 

Another way to prevent circular wait is to request 
resources in the same order

 
from all threads

•
 

If thread holds resource i
 

and wants j, then j > i
━

 

If all other threads comply with this rule, a loop back to i
 

in 
the resource graph is impossible

•
 

DPH v1.3

PreventionPreventionPrevention

CRITICAL_SECTION cs[N];  // one mutex for each fork

GrabForks (int i) {
if (i != N-1) {  // not the last guy

EnterCriticalSection (&cs[i]);
EnterCriticalSection (&cs[i+1]);

}
else {

// special case, a leftie
EnterCriticalSection (&cs[0]);
EnterCriticalSection (&cs[N-1]);

}
}

CRITICAL_SECTION cs[N];  // one mutex for each fork

GrabForks (int i) {
if (i != N-1) {  // not the last guy

EnterCriticalSection (&cs[i]);
EnterCriticalSection (&cs[i+1]);

}
else {

// special case, a leftie
EnterCriticalSection (&cs[0]);
EnterCriticalSection (&cs[N-1]);

}
}

T=0

 
2M/sec N = 5

T=100ms

 
254/sec N = 500

ii jj
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•
 

Condition #3: no preemption of held mutexes
━

 

Let waiter (OS) forcefully remove forks and reassign them
•

 
More realistic version:
━

 

If
 

unable to make progress, threads can voluntarily release 
held mutexes, randomly sleep, and start again

•
 

Similar to PC 3.4, which was the fastest in prior tests

PreventionPreventionPrevention

CRITICAL_SECTION cs[N];  // one mutex for each fork

GrabForks (int i) {
EnterCriticalSection (&cs[i]);
do {

if (TryEnterCriticalSection ( &cs[ (i+1)%N ] ) != 0)
break;

// unable to acquire
LeaveCriticalSection (&cs[i]);
Sleep (rand()*DELAY);
EnterCriticalSection (&cs[i]);

} while (true);
}

CRITICAL_SECTION cs[N];  // one mutex for each fork

GrabForks (int i) {
EnterCriticalSection (&cs[i]);
do {

if (TryEnterCriticalSection ( &cs[ (i+1)%N ] ) != 0)
break;

// unable to acquire
LeaveCriticalSection (&cs[i]);
Sleep (rand()*DELAY);
EnterCriticalSection (&cs[i]);

} while (true);
}

T=0

 
1.9M/sec 

N = 5

T=100ms

 
2400/sec 
N = 500

DPH v1.4
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