CSCE 313-200

Introduction to Computer Systems
Spring 2025

Deadlocks

Dmitri Loguinov
Texas A&M University

March 6, 2025

Chapter 6: Roadmap

6.1 Principles Part Il
6.6 Dining philosophers
6.2 Prevention

6.3 Avoidance

6.4 Detection

6.5 Integrated strategies
6.7 Unix

6.8 Linux

6.9 Solaris

6.10 Windows

Chapter 6: Deadlocks

ThreadP (O { ThreadQ O {
. . mutexA.Lock(); mutexB.Lock();
Prl nCI Ies mutexB.Lock(); mutexA.Lock();

‘! // critical section // critical section
mutexA.Unlock(); mutexB.Unlock();
mutexB.Unlock(); mutexA.Unlock();

¥ ¥

« Deadlock is a permanent (infinite) wait for resources
- Important problem in the field of synchronization

« Typical example with threads P and Q:
- Two mutexes locked in different order
- Common source of deadlocks in more general cases

* Another example:

CarNorth (O {
mutexA.Lock();
mutexC.Lock();
// drive
mutexA.Unlock();
mutexC.Unlock();

} CarWest () {
mutexC.Lock();
mutexD.Lock();
// drive
mutexC.Unlock();
mutexD.Unlock();

Principles

« Example (cont'd): deadlock possible in general and...
- Certain when each grabs their first mutex:

« Conditions for a deadlock
to be possible
- 1) Mutual exclusion (no sharing)

- 2) Hold and wait (allowed to hold one
resource and wait for another, i.e.,
acquisition of multiple mutexes is not atomic)

- 3) No preemption (held resources not released until critical
section has been successfully completed)

 Conditions for it to be certain
- 1)-3) plus 4) circular wait

Progress Diagram

 Assume two threads P and Q in parallel execution
- Denote by t the absolute time

- Progress diagram is a 2D parametric curve (x(t),y(t)) where
X(t) is the number of instructions executed by Q and y(t) by P
thread P X, Y, Z
timeline !
prints Z "““""““"““““““’E """""
; Y, X
prints X -—--------- f
Curves must be :
monotonically
non-decreasing in | > threaq o
timeline

both axes

prints Y

Progress Diagram

« Back to our example with P and Q

« Mutexes place L-shaped obstacles/barriers on the
progress diagram that cannot be crossed

P safe

ThreadP () { "

mutexA.Lock();

mutexB.Lock();

// critical section B.unlock +

mutexA.Unlock(); |

mutexB.Unlock(); A.unlock
3
ThreadQ) { B.lock

mutexB.Lock();
mutexA.Lock();
// critical section A.llock ——---o=emm- N
mutexB.Unlock(Q); i
mutexA.Unlock();

; B ——Q
B.lock “A.lock B.unlock
A.unlock

Progress Diagram

P A
* In three quadrants B-unlock—- T
A =1 A | k__ """"""""""""" N - ----------------- (R — Lo
near the origin, e -
deadlock possible .
: B.lock —----------- * BRI SR
= _In the f(?urth’ it possiblei certain
IS certain A.lock —------------ ------------ | ; _______
« All other sections possible possible -
i —
are safe B.lock A.lock B.unlock Q
- Except impossible A.unlock

states behind barriers
« Static or dynamic analysis to detect deadlocks

« What happens with N threads?

- N-dimensional diagram

PA

Progress Diagram

 How about
these diagrams?

* |n what order are — 9
mutexes acquired?

- Write pseudo code for P/Q
F) A

B WD ‘W

Resource Allocation Graph

* To visualize deadlocks, often a graph is drawn between
all threads and resources

- Edges of this bipartite graph are labeled with “held by”
(resources - threads) and “wants” (threads - resources)

« If this directed graph has a cycle, there is a deadlock
- Car labels (N, E, W, S) map to North/East/West/South position

wants

v
A — B k— C — D resources
l heldlby l J
2o b= g 2o = threads

Chapter 6: Roadmap

6.1 Principles

6.6 Dining philosophers
6.2 Prevention

6.3 Avoidance

6.4 Detection

6.5 Integrated strategies
6.7 Unix

6.8 Linux

6.9 Solaris

6.10 Windows

10

Dining Philosophers

« Yet another famous synchronization problem
- Proposed by Dijkstra in 1965

* N philosophers are sitting at a round table with N
forks between them

— Usually N = 5 and the food is
spaghetti, but this is not essential
« Each thinks for a random
period of time until becoming
hungry, then attempts to eat

- Food requires usage
of both adjacent forks

11

Dining Philosophers

* Operation of a philosopher (each
IS a separate thread 0 <i < N-1)

 Forks are labeled 0 to N-1 as well

Mutex mutexFork[N]; // one for each fork

DropForks (int 1) {
mutexFork[i1].-Unlock();
mutexFork[(i+1)%N].Unlock();

by

« Basic approach DPH v1.0:

Mutex mutexFork[N]; // one for each fork

GrabForks (int 1) {
mutexFork[i].Lock(); // right fork
mutexFork[(i+1)%N].Lock(); 7/ left fork
}

Philosopher (int 1) {
while (true) {
Think O;
GrabForks (1);
Eat Q;
DropForks(1);

When all are hungry, deadlock is possible

12

Chapter 6: Roadmap

6.1 Principles

6.6 Dining philosophers
6.2 Prevention

6.3 Avoidance

6.4 Detection

6.5 Integrated strategies
6.7 Unix

6.8 Linux

6.9 Solaris

6.10 Windows

13

Prevention

 In deadlock prevention, the algorithm is modified by
programmer to make one of the 4 conditions leading
to deadlock impossible

 Condition #1: mutual exclusion

- Typically cannot be safely eliminated (e.g., cars cannot drive
on top of each other thru intersection)

 Condition #2: hold and wait WaltAl is either super slow
- Can be overcome with WaitAll, DPH vq.1 (o) o @sent (5

Mutex mutexFork[N]; // one mutex for each fork

GrabForks (int 1) {
WaitAll (mutexFork[i], mutexFork[(i+1)%N]); 7/ both forks

by

- Besides speed, main drawback is that all needed mutexes
must be known ahead of time and acquired in bulk 14

Prevention

Condition #4: circular wait

- Design algorithm such that a circular deadlock cannot occur

Notice that presence of 3 or fewer cars (4 or fewer
philosophers) cannot cause a cyclic wait graph
- Use a semaphore to control how many at the table

Q: how many can eat concurrently?
- If only |[N/2], why allow all N to grab forks?

How many should be allowed to use forks?
- To achieve max concurrency, N-1, but ...
- Algorithm is prone to persistent chains of waits:

P; (eat) Pirq (wait) Pi., (Wail)

15

Prevention

« Suppose T > 0 is the eat+think delay in seconds
- Max theoretical rate of algorithmisN/2*1/T
- |If T = 0, then mutex locking/unlocking is the bottleneck

CRITICAL_SECTION cs[N]; 7/ one mutex for each fork T=0
HANDLE sema = CreateSemaphore (..., N-1, N-1, ...); -
450K/sec N = 5
GrabForks (int 1) { o
WaitForSingleObject (sema, INFINITE); —
EnterCriticalSection (&cs[i]); DPH v1.2 1=100ms
EnterCriticalSection (&cs[(i+1)%N]); 10/sec N = 500
¥

» Elegant semaphore solution, but slow
- T=0: kernel-mode semaphore kills performance

- T=100ms: prone to sequential chains of waits, in which case
performance may deteriorate to 1/T = 10 per second

- Improves if think delays are random (1700/sec), or
semaphore starts at N/2 (1900/sec) 16

Prevention

* Another way to prevent circular wait is to request
resources in the same order from all threads

 |f thread holds resource : and wants j, then 5 > ¢
- |f all other threads comply with this rule, a loop back to i in

the resource graph is impossible

« DPH V1.3

CRITICAL_SECTION cs[N]; 7/ one mutex for each fork

GrabForks (int 1) {
if (1 '=N-1) { // not the last guy
EnterCriticalSection (&cs[i]);
EnterCriticalSection (&cs[i+1l]);

}

else {
// special case, a leftie
EnterCriticalSection (&cs[0]);
EnterCriticalSection (&cs[N-1]);
by

by

L

T=0

2M/sec N =5
T=100ms

254/sec N = 500

17

Prevention

« Condition #3: no preemption of held mutexes
- Let waiter (OS) forcefully remove forks and reassign them

* More realistic version:

- |f unable to make progress, threads can voluntarily release

held mutexes, randomly sleep, and start again

« Similar to PC 3.4, which was the fastest in prior tests

CRITICAL_SECTION cs[N]; 7/ one mutex for each fork

GrabForks (int 1) {

EnterCriticalSection (&cs[i]);

do {
iT (TryEnterCriticalSection (&cs[(i+1)%N]) '= 0)

break;

// unable to acquire
LeaveCriticalSection (&cs[i]);
Sleep (rand()*DELAY); DPH v1.4
EnterCriticalSection (&cs[i]);

} while (true);

by

1=0
1.9M/sec
N=5

T=100ms

2400/sec
N =500

18

	CSCE 313-200�Introduction to Computer Systems�Spring 2025
	Chapter 6: Roadmap
	Principles
	Principles
	Progress Diagram
	Progress Diagram
	Progress Diagram
	Progress Diagram
	Resource Allocation Graph
	Chapter 6: Roadmap
	Dining Philosophers
	Dining Philosophers
	Chapter 6: Roadmap
	Prevention
	Prevention
	Prevention
	Prevention
	Prevention

