
1

CSCE 313-200
 Introduction to Computer Systems

 Spring 2025

CSCE CSCE 313313--200200
 Introduction to Computer SystemsIntroduction to Computer Systems

 Spring 2025Spring 2025

DeadlocksDeadlocks
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

March 6, 2025March 6, 2025

2

Chapter 6: RoadmapChapter 6: RoadmapChapter 6: Roadmap

6.1 Principles
6.6 Dining philosophers
6.2 Prevention
6.3 Avoidance
6.4 Detection
6.5 Integrated strategies
6.7 Unix
6.8 Linux
6.9 Solaris
6.10 Windows

Part II
Chapter 3: ProcessesChapter 3: Processes
Chapter 4: ThreadsChapter 4: Threads

Chapter 5: ConcurrencyChapter 5: Concurrency
Chapter 6: DeadlocksChapter 6: Deadlocks

3

•

Deadlock is a permanent (infinite) wait for resources
━

Important problem in the field of synchronization
•

Typical example with threads P and Q:
━

Two mutexes locked in different order
━

Common source of deadlocks in more general cases
•

Another example:

PrinciplesPrinciplesPrinciples
ThreadP () {

mutexA.Lock();
mutexB.Lock();
// critical section
mutexA.Unlock();
mutexB.Unlock();

}

ThreadP () {
mutexA.Lock();
mutexB.Lock();
// critical section
mutexA.Unlock();
mutexB.Unlock();

}

ThreadQ () {
mutexB.Lock();
mutexA.Lock();
// critical section
mutexB.Unlock();
mutexA.Unlock();

}

ThreadQ () {
mutexB.Lock();
mutexA.Lock();
// critical section
mutexB.Unlock();
mutexA.Unlock();

}

A

C

B

D

CarNorth () {
mutexA.Lock();
mutexC.Lock();
// drive
mutexA.Unlock();
mutexC.Unlock();

}

CarNorth () {
mutexA.Lock();
mutexC.Lock();
// drive
mutexA.Unlock();
mutexC.Unlock();

} CarWest () {
mutexC.Lock();
mutexD.Lock();
// drive
mutexC.Unlock();
mutexD.Unlock();

}

CarWest () {
mutexC.Lock();
mutexD.Lock();
// drive
mutexC.Unlock();
mutexD.Unlock();

}

4

•

Example (cont’d): deadlock possible

in general and...
━

Certain

when each grabs their first mutex:
•

Conditions for a deadlock

 to be possible
━

1) Mutual exclusion (no sharing)
━

2) Hold and wait (allowed to hold one
resource and wait for another, i.e.,
acquisition of multiple mutexes is not atomic)

━

3) No preemption (held resources not released until critical
section has been successfully completed)

•

Conditions for it to be certain
━

1)-3) plus 4) circular wait

PrinciplesPrinciplesPrinciples

A

C

B

D

5

•

Assume two threads P and Q in parallel execution
━

Denote by t the absolute time
━

Progress diagram

is a 2D parametric curve (x(t),y(t)) where
x(t) is the number of instructions executed by Q and y(t) by P

Progress DiagramProgress DiagramProgress Diagram

thread Q
timeline

thread P
timeline

prints Y

prints X

prints Z

Curves must be
monotonically

non-decreasing in
both axes

X, Y, Z

Y, X

6

•

Back to our example with P and Q
•

Mutexes

place

L-shaped

obstacles/barriers on the

progress diagram that cannot be crossed

Progress DiagramProgress DiagramProgress Diagram

ThreadP () {
mutexA.Lock();
mutexB.Lock();
// critical section
mutexA.Unlock();
mutexB.Unlock();

}

ThreadP () {
mutexA.Lock();
mutexB.Lock();
// critical section
mutexA.Unlock();
mutexB.Unlock();

}

ThreadQ () {
mutexB.Lock();
mutexA.Lock();
// critical section
mutexB.Unlock();
mutexA.Unlock();

}

ThreadQ () {
mutexB.Lock();
mutexA.Lock();
// critical section
mutexB.Unlock();
mutexA.Unlock();

}

B.lock

B.unlock

B.lock B.unlock
A.unlock

A.lock

A.lock

A.unlock

safe

safe

P

Q

7

•

In three quadrants
near the origin,
deadlock possible
━

In the fourth,

it
is

certain

•

All other sections
are safe
━

Except impossible
 states behind barriers

•

Static or dynamic analysis to detect deadlocks
•

What happens with N threads?
━

N-dimensional diagram

Progress DiagramProgress DiagramProgress Diagram

A.lock

B.lock

A.unlock
B.unlock

A.lockB.lock
A.unlock

B.unlock

possible possible

possible certain

safe?

P

Q

8

•

How about
these diagrams?

•

In what order are
mutexes acquired?
━

Write pseudo code for P/Q

Progress DiagramProgress DiagramProgress Diagram
P

Q

P

Q

P

Q

9

•

To visualize deadlocks, often a graph is drawn between
all threads and resources
━

Edges of this bipartite graph are labeled with “held by”
 (resources  threads) and “wants”

(threads  resources)

•

If this directed graph has a cycle, there is a deadlock
━

Car labels (N, E, W, S) map to North/East/West/South position

Resource Allocation GraphResource Allocation GraphResource Allocation Graph

AA BB CC DD resources

threads

wants

held by

N E W S

10

Chapter 6: RoadmapChapter 6: RoadmapChapter 6: Roadmap

6.1 Principles
6.6 Dining philosophers
6.2 Prevention
6.3 Avoidance
6.4 Detection
6.5 Integrated strategies
6.7 Unix
6.8 Linux
6.9 Solaris
6.10 Windows

11

•

Yet another famous synchronization problem
━

Proposed by Dijkstra in 1965
•

N

philosophers are sitting at a round table with N

forks between them
━

Usually N = 5 and the food is
spaghetti, but this is not essential

•

Each thinks for a random
period of time until becoming
hungry, then attempts to eat
━

Food requires usage
of both

adjacent forks

Dining PhilosophersDining PhilosophersDining Philosophers

12

•

Operation of a philosopher (each
is a separate thread 0 ·

i ·

N-1)

•

Forks are labeled 0 to N-1 as well

•

Basic approach DPH v1.0:

•

When all are hungry, deadlock is possible

Dining PhilosophersDining PhilosophersDining Philosophers
Philosopher (int i) {

while (true) {
Think ();
GrabForks (i);
Eat ();
DropForks(i);

}
}

Philosopher (int i) {
while (true) {

Think ();
GrabForks (i);
Eat ();
DropForks(i);

}
}

Mutex mutexFork[N]; // one for each fork

DropForks (int i) {
mutexFork[i].Unlock();
mutexFork[(i+1)%N].Unlock();

}

Mutex mutexFork[N]; // one for each fork

DropForks (int i) {
mutexFork[i].Unlock();
mutexFork[(i+1)%N].Unlock();

}

Mutex mutexFork[N]; // one for each fork

GrabForks (int i) {
mutexFork[i].Lock(); // right fork
mutexFork[(i+1)%N].Lock(); // left fork

}

Mutex mutexFork[N]; // one for each fork

GrabForks (int i) {
mutexFork[i].Lock(); // right fork
mutexFork[(i+1)%N].Lock(); // left fork

}

00 11
22

44
33

00 11

22

33

44

13

Chapter 6: RoadmapChapter 6: RoadmapChapter 6: Roadmap

6.1 Principles
6.6 Dining philosophers
6.2 Prevention
6.3 Avoidance
6.4 Detection
6.5 Integrated strategies
6.7 Unix
6.8 Linux
6.9 Solaris
6.10 Windows

14

•

In deadlock prevention, the algorithm is modified by
programmer to

make one of the 4 conditions leading

to deadlock impossible
•

Condition #1: mutual exclusion
━

Typically cannot be safely eliminated (e.g., cars cannot drive
on top of each other thru intersection)

•

Condition #2: hold and wait
━

Can be overcome with WaitAll, DPH v1.1

━

Besides speed, main drawback is that all needed mutexes
must be known ahead of time and acquired in bulk

PreventionPreventionPrevention

Mutex mutexFork[N]; // one mutex for each fork

GrabForks (int i) {
WaitAll (mutexFork[i], mutexFork[(i+1)%N]); // both forks

}

Mutex mutexFork[N]; // one mutex for each fork

GrabForks (int i) {
WaitAll (mutexFork[i], mutexFork[(i+1)%N]); // both forks

}

WaitAll

is either super slow

(Windows) or absent (Unix)

15

•

Condition #4: circular wait
━

Design algorithm such that a circular deadlock cannot occur
•

Notice that presence of 3 or fewer cars (4 or fewer
philosophers) cannot cause a cyclic wait graph
━

Use a semaphore to control how many at the table
•

Q: how many can eat concurrently?
━

If only bN/2c, why allow all N to grab forks?

•

How many should be allowed to use forks?
━

To achieve max concurrency, N-1, but …
━

Algorithm

is prone

to persistent chains of waits:

PreventionPreventionPrevention

Pi

(eat)Pi

(eat) Pi+1

(wait)Pi+1

(wait) Pi+2

(wait)Pi+2

(wait) Pi+k

(wait)Pi+k

(wait)…

16

•

Suppose T > 0 is the eat+think

delay in seconds
━

Max theoretical rate of algorithm is N / 2 * 1 / T
━

If T = 0, then mutex locking/unlocking is the bottleneck

•

Elegant semaphore solution, but slow
━

T=0: kernel-mode semaphore kills performance
━

T=100ms: prone to sequential chains of waits, in which case
performance may deteriorate to 1/T = 10 per

second

━

Improves if think delays are random (1700/sec), or
semaphore

starts at N/2

(1900/sec)

PreventionPreventionPrevention

CRITICAL_SECTION cs[N]; // one mutex for each fork
HANDLE sema = CreateSemaphore (..., N-1, N-1, ...);

GrabForks (int i) {
WaitForSingleObject (sema, INFINITE);
EnterCriticalSection (&cs[i]);
EnterCriticalSection (&cs[(i+1)%N]);

}

CRITICAL_SECTION cs[N]; // one mutex for each fork
HANDLE sema = CreateSemaphore (..., N-1, N-1, ...);

GrabForks (int i) {
WaitForSingleObject (sema, INFINITE);
EnterCriticalSection (&cs[i]);
EnterCriticalSection (&cs[(i+1)%N]);

}

T=0

450K/sec N = 5

T=100ms

10/sec N = 500

DPH v1.2

17

•

Another way to prevent circular wait is to request
resources in the same order

from all threads

•

If thread holds resource i

and wants j, then j > i
━

If all other threads comply with this rule, a loop back to i

in
the resource graph is impossible

•

DPH v1.3

PreventionPreventionPrevention

CRITICAL_SECTION cs[N]; // one mutex for each fork

GrabForks (int i) {
if (i != N-1) { // not the last guy

EnterCriticalSection (&cs[i]);
EnterCriticalSection (&cs[i+1]);

}
else {

// special case, a leftie
EnterCriticalSection (&cs[0]);
EnterCriticalSection (&cs[N-1]);

}
}

CRITICAL_SECTION cs[N]; // one mutex for each fork

GrabForks (int i) {
if (i != N-1) { // not the last guy

EnterCriticalSection (&cs[i]);
EnterCriticalSection (&cs[i+1]);

}
else {

// special case, a leftie
EnterCriticalSection (&cs[0]);
EnterCriticalSection (&cs[N-1]);

}
}

T=0

2M/sec N = 5

T=100ms

254/sec N = 500

ii jj

18

•

Condition #3: no preemption of held mutexes
━

Let waiter (OS) forcefully remove forks and reassign them
•

More realistic version:
━

If

unable to make progress, threads can voluntarily release
held mutexes, randomly sleep, and start again

•

Similar to PC 3.4, which was the fastest in prior tests

PreventionPreventionPrevention

CRITICAL_SECTION cs[N]; // one mutex for each fork

GrabForks (int i) {
EnterCriticalSection (&cs[i]);
do {

if (TryEnterCriticalSection (&cs[(i+1)%N]) != 0)
break;

// unable to acquire
LeaveCriticalSection (&cs[i]);
Sleep (rand()*DELAY);
EnterCriticalSection (&cs[i]);

} while (true);
}

CRITICAL_SECTION cs[N]; // one mutex for each fork

GrabForks (int i) {
EnterCriticalSection (&cs[i]);
do {

if (TryEnterCriticalSection (&cs[(i+1)%N]) != 0)
break;

// unable to acquire
LeaveCriticalSection (&cs[i]);
Sleep (rand()*DELAY);
EnterCriticalSection (&cs[i]);

} while (true);
}

T=0

1.9M/sec

N = 5

T=100ms

2400/sec
N = 500

DPH v1.4

	CSCE 313-200�Introduction to Computer Systems�Spring 2025
	Chapter 6: Roadmap
	Principles
	Principles
	Progress Diagram
	Progress Diagram
	Progress Diagram
	Progress Diagram
	Resource Allocation Graph
	Chapter 6: Roadmap
	Dining Philosophers
	Dining Philosophers
	Chapter 6: Roadmap
	Prevention
	Prevention
	Prevention
	Prevention
	Prevention

