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ThreadP (O { ThreadQ O {
. . mutexA.Lock(); mutexB.Lock();
Prl nCI Ies mutexB.Lock(); mutexA.Lock();

‘! // critical section // critical section
mutexA.Unlock(); mutexB.Unlock();
mutexB.Unlock(); mutexA.Unlock();

¥ ¥

« Deadlock is a permanent (infinite) wait for resources
- Important problem in the field of synchronization

« Typical example with threads P and Q:
- Two mutexes locked in different order
- Common source of deadlocks in more general cases

* Another example:

CarNorth (O {
mutexA.Lock();
mutexC.Lock();
// drive
mutexA.Unlock();
mutexC.Unlock();

} CarWest () {
mutexC.Lock();
mutexD.Lock();
// drive
mutexC.Unlock();
mutexD.Unlock();




Principles

« Example (cont'd): deadlock possible in general and...
- Certain when each grabs their first mutex:

« Conditions for a deadlock
to be possible
- 1) Mutual exclusion (no sharing)

- 2) Hold and wait (allowed to hold one
resource and wait for another, i.e.,
acquisition of multiple mutexes is not atomic)

- 3) No preemption (held resources not released until critical
section has been successfully completed)

 Conditions for it to be certain
- 1)-3) plus 4) circular wait




Progress Diagram

 Assume two threads P and Q in parallel execution
- Denote by t the absolute time

- Progress diagram is a 2D parametric curve (x(t),y(t)) where
X(t) is the number of instructions executed by Q and y(t) by P
thread P X, Y, Z
timeline !
prints Z "““""““"““““““’E """""
; Y, X
prints X -—--------- f
Curves must be :
monotonically
non-decreasing in | > threaq o
timeline

both axes

prints Y



Progress Diagram

« Back to our example with P and Q

« Mutexes place L-shaped obstacles/barriers on the
progress diagram that cannot be crossed

P safe

ThreadP () { "

mutexA.Lock();

mutexB.Lock();

// critical section B.unlock +

mutexA.Unlock(); |

mutexB.Unlock(); A.unlock
3
ThreadQ ) { B.lock

mutexB.Lock();
mutexA.Lock();
// critical section A.llock ——---o=emm- N
mutexB.Unlock(Q); i
mutexA.Unlock();

; B ——Q
B.lock “A.lock B.unlock
A.unlock




Progress Diagram

P A
* In three quadrants B-unlock—- T
A =1 A | k__ """"""""""""" N - ----------------- (R — Lo
near the origin, e -
deadlock possible .
: B.lock —----------- * BRI SR
= _In the f(?urth’ it possiblei certain
IS certain A.lock —------------ ------------ | ; _______
« All other sections possible possible -
i —
are safe B.lock A.lock B.unlock Q
- Except impossible A.unlock

states behind barriers
« Static or dynamic analysis to detect deadlocks

« What happens with N threads?

- N-dimensional diagram




PA

Progress Diagram

 How about
these diagrams?

* |n what order are — 9
mutexes acquired?

- Write pseudo code for P/Q
F) A

B WD ‘W




Resource Allocation Graph

* To visualize deadlocks, often a graph is drawn between
all threads and resources

- Edges of this bipartite graph are labeled with “held by”
(resources - threads) and “wants” (threads - resources)

« If this directed graph has a cycle, there is a deadlock
- Car labels (N, E, W, S) map to North/East/West/South position

wants

v
A — B k— C — D resources
l heldlby l J
2o b= g 2o = threads
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Dining Philosophers

« Yet another famous synchronization problem
- Proposed by Dijkstra in 1965

* N philosophers are sitting at a round table with N
forks between them

— Usually N = 5 and the food is
spaghetti, but this is not essential
« Each thinks for a random
period of time until becoming
hungry, then attempts to eat

- Food requires usage
of both adjacent forks

11



Dining Philosophers

* Operation of a philosopher (each
IS a separate thread 0 <i < N-1)

 Forks are labeled 0 to N-1 as well

Mutex mutexFork[N]; // one for each fork

DropForks (int 1) {
mutexFork[i1].-Unlock();
mutexFork[ (i+1)%N].Unlock();

by

« Basic approach DPH v1.0:

Mutex mutexFork[N]; // one for each fork

GrabForks (int 1) {
mutexFork[i].Lock(); // right fork
mutexFork[(i+1)%N].Lock(); 7/ left fork
}

Philosopher (int 1) {
while (true) {
Think O;
GrabForks (1);
Eat Q;
DropForks(1);

When all are hungry, deadlock is possible

12
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Prevention

 In deadlock prevention, the algorithm is modified by
programmer to make one of the 4 conditions leading
to deadlock impossible

 Condition #1: mutual exclusion

- Typically cannot be safely eliminated (e.g., cars cannot drive
on top of each other thru intersection)

 Condition #2: hold and wait WaltAl is either super slow
- Can be overcome with WaitAll, DPH vq.1 (o) o @sent (5

Mutex mutexFork[N]; // one mutex for each fork

GrabForks (int 1) {
WaitAll (mutexFork[i], mutexFork[(i+1)%N]); 7/ both forks

by

- Besides speed, main drawback is that all needed mutexes
must be known ahead of time and acquired in bulk 14




Prevention

Condition #4: circular wait

- Design algorithm such that a circular deadlock cannot occur

Notice that presence of 3 or fewer cars (4 or fewer
philosophers) cannot cause a cyclic wait graph
- Use a semaphore to control how many at the table

Q: how many can eat concurrently?
- If only |[N/2], why allow all N to grab forks?

How many should be allowed to use forks?
- To achieve max concurrency, N-1, but ...
- Algorithm is prone to persistent chains of waits:

P; (eat) Pirq (wait) Pi., (Wail)

15



Prevention

« Suppose T > 0 is the eat+think delay in seconds
- Max theoretical rate of algorithmisN/2*1/T
- |If T = 0, then mutex locking/unlocking is the bottleneck

CRITICAL_SECTION cs[N]; 7/ one mutex for each fork T=0
HANDLE sema = CreateSemaphore (..., N-1, N-1, ...); -
450K/sec N = 5
GrabForks (int 1) { o
WaitForSingleObject (sema, INFINITE); —
EnterCriticalSection (&cs[i]); DPH v1.2 1=100ms
EnterCriticalSection (&cs[(i+1)%N]); 10/sec N = 500
¥

» Elegant semaphore solution, but slow
- T=0: kernel-mode semaphore kills performance

- T=100ms: prone to sequential chains of waits, in which case
performance may deteriorate to 1/T = 10 per second

- Improves if think delays are random (1700/sec), or
semaphore starts at N/2 (1900/sec) 16



Prevention

* Another way to prevent circular wait is to request
resources in the same order from all threads

 |f thread holds resource : and wants j, then 5 > ¢
- |f all other threads comply with this rule, a loop back to i in

the resource graph is impossible

« DPH V1.3

CRITICAL_SECTION cs[N]; 7/ one mutex for each fork

GrabForks (int 1) {
if (1 '=N-1) { // not the last guy
EnterCriticalSection (&cs[i]);
EnterCriticalSection (&cs[i+1l]);

}

else {
// special case, a leftie
EnterCriticalSection (&cs[0]);
EnterCriticalSection (&cs[N-1]);
by

by

L

T=0

2M/sec N =5
T=100ms

254/sec N = 500
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Prevention

« Condition #3: no preemption of held mutexes
- Let waiter (OS) forcefully remove forks and reassign them

* More realistic version:

- |f unable to make progress, threads can voluntarily release

held mutexes, randomly sleep, and start again

« Similar to PC 3.4, which was the fastest in prior tests

CRITICAL_SECTION cs[N]; 7/ one mutex for each fork

GrabForks (int 1) {

EnterCriticalSection (&cs[i]);

do {
iT (TryEnterCriticalSection ( &cs[ (i+1)%N ] ) '= 0)

break;

// unable to acquire
LeaveCriticalSection (&cs[i]);
Sleep (rand()*DELAY); DPH v1.4
EnterCriticalSection (&cs[i]);

} while (true);

by

1=0
1.9M/sec
N=5

T=100ms

2400/sec
N =500
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