
1

CSCE 463/612
 Networks and Distributed Processing

 Spring 2025

CSCE 463/612CSCE 463/612
 Networks and Distributed ProcessingNetworks and Distributed Processing

 Spring 2025Spring 2025

Application Layer VApplication Layer V
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

February 18, 2025February 18, 2025

2

Homework #2Homework #2Homework #2

•

Unlike HTTP, all fields are binary
━

Make sure to refresh pointer usage
•

Question format:

•

Create structs for fixed headers
━

Fill in the values (flags: DNS_QUERY
and DNS_RD, nQuestions = 1)

━

Allocate memory for the packet
━

Write question into buffer

class FixedDNSheader {
u_short ID;
u_short flags;
u_short questions;
...

};

class FixedDNSheader {
u_short ID;
u_short flags;
u_short questions;
...

};

class QueryHeader {
u_short type;
u_short class;

};

class QueryHeader {
u_short type;
u_short class;

};

str1 str1 size

1 byte

Query type Query class

2 bytes 2 bytes

strn strn size

1 byte

0 …

question

TX IDTX ID flagsflags
nQuestionsnQuestions nAnswersnAnswers
nAuthoritynAuthority nAdditionalnAdditional

questions (variable size)questions (variable size)
answers (variable size)answers (variable size)
authority (variable size)authority (variable size)
additional (variable size)additional (variable size)

3

Homework #2Homework #2Homework #2

•

High-level operation for DNS questions:

•

If packet is incorrectly formatted, you will usually get no
response; use Wireshark to check outgoing packets

char packet [MAX_DNS_LEN]; // 512 bytes is max
char host[] = “www.google.com”;
int pkt_size = strlen(host) + 2 + sizeof(FixedDNSheader) + sizeof(QueryHeader);

// fixed field initialization
FixedDNSheader *fdh = (FixedDNSheader *) packet;
QueryHeader *qh = (QueryHeader*) (packet + pkt_size - sizeof(QueryHeader));
fdh->ID = ...
fdh->flags = ...
...
qh->type = ...
qh->class = ...

// fill in the question
MakeDNSquestion (fdh + 1, host);
// transmit to Winsock
sendto (sock, packet, ...);

char packet [MAX_DNS_LEN]; // 512 bytes is max
char host[] = “www.google.com”;
int pkt_size = strlen(host) + 2 + sizeof(FixedDNSheader) + sizeof(QueryHeader);

// fixed field initialization
FixedDNSheader *fdh = (FixedDNSheader *) packet;
QueryHeader *qh = (QueryHeader*) (packet + pkt_size - sizeof(QueryHeader));
fdh->ID = ...
fdh->flags = ...
...
qh->type = ...
qh->class = ...

// fill in the question
MakeDNSquestion (fdh + 1, host);
// transmit to Winsock
sendto (sock, packet, ...);

4

Homework #2Homework #2Homework #2

•

Formation of questions:
makeDNSquestion (char* buf, char *host) {

while(words left to copy){
buf[i++] = size_of_next_word;
memcpy (buf+i, next_word, size_of_next_word);
i += size_of_next_word;

}
buf[i] = 0; // last word NULL-terminated

}

•

All answers start with an RR name, followed by a fixed
DNS answer header, followed by the answer itself
━

Uncompressed answer (not common)
0x3 “irl” 0x2 “cs” 0x4 “tamu” 0x3 “edu” 0x00
<DNSanswerHdr> <ANSWER>

━

Compressed (2 upper bits 11, next 14 bits jump offset)
0xC0 0x0C <DNSanswerHdr> <ANSWER>

•

For type-A questions, the answer is a 4-byte IP

class DNSanswerHdr {
u_short type;
u_short class;
u_int ttl;
u_short len;

};

class DNSanswerHdr {
u_short type;
u_short class;
u_int ttl;
u_short len;

};

5

Homework #2Homework #2Homework #2

•

To check the header
━

Hex printout on screen
━

Wireshark
•

What is sizeof(DNSanswerHdr)?
━

The actual size is 10 bytes, but the compiler will
align/pad it to 4-byte boundary (so 12)

•

Remember to change struct
packing of all classes that define

 binary headers to 1 byte
•

Caveats (must be properly handled):
━

Exceeding array boundaries on jumps
━

Infinite looping on compressed answers

class DNSanswerHdr {
u_short type;
u_short class;
u_int ttl;
u_short len;

};

class DNSanswerHdr {
u_short type;
u_short class;
u_int ttl;
u_short len;

};

#pragma pack(push,1)
// define headers here
#pragma pack(pop)

#pragma pack(push,1)
// define headers here
#pragma pack(pop)

6

•

How to check if compressed and read 14-bit offset?
━

Suppose array char *ans contains the reply packet
━

The answer begins within this array at position curPos

•

The first two checks will generally fail
━

Use only unsigned

chars when reading buffer!

Homework #2Homework #2Homework #2

char *ans; // points to reply buffer
if (ans [curPos] >= 0xC0)

// compressed; so jump
else

// uncompressed, read next word

char *ans; // points to reply buffer
if (ans [curPos] >= 0xC0)

// compressed; so jump
else

// uncompressed, read next word

// computing the jump offset
int off = ((ans[curPos] & 0x3F) << 8) + ans[curPos + 1];
// computing the jump offset
int off = ((ans[curPos] & 0x3F) << 8) + ans[curPos + 1];

char *ans; // points to reply buffer
if ((ans [curPos] >> 6) == 3)

// compressed; so jump
else

// uncompressed, read next word

char *ans; // points to reply buffer
if ((ans [curPos] >> 6) == 3)

// compressed; so jump
else

// uncompressed, read next word

11 11 xx xx xx xx xx xx xx xx xx xx xx xx xx xx

14 bits

7

•

Note that jumps may appear mid-answer
0x3 “irl” 0xC0 0x22 <DNSanswerHdr> <ANSWER>

•

Jumps may be nested, but must eventually end with a
0-length word
━

Need to remember the position following the very first jump
 so that you can come back to read DNSanswerHdr

•

Replies may be malicious or malformatted
━

Homework must avoid crashing
•

If AAAA (IPv6) answers are present, skip
━

Use DNSanswerHdr::len to jump over unknown types

•

Caution with TAMU VPN
━

Malformed packets are filtered out

Homework #2Homework #2Homework #2

8

Chapter 2: RoadmapChapter 2: RoadmapChapter 2: Roadmap

2.1 Principles of network applications
2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

━

SMTP, POP3, IMAP
2.5 DNS (extras)
2.6 P2P file sharing

9

Domain FluxDomain FluxDomain Flux

•

Viruses, trojan horses, rootkits, and various malware
affect millions of computers today

•

Years ago, viruses mostly performed pranks or
corrupted data, but this has changed
━

Modern attacks are often driven by financial gains
•

Infected hosts are organized into botnets
━

Large collection of computers under control of a botmaster
•

Early botnets used IRC (Internet Relay Chat) to send
and receive commands

IRC server on the Internet botmaster

infected
hosts

10

Domain Flux 2Domain Flux 2Domain Flux 2

•

Eventually, ISPs started blocking IRC traffic
━

Also, IRC servers were easy targets for shutdown and filtering
(e.g., detection of encrypted commands and botnet channels)

•

New generation of botnets uses dynamically changing
rendezvous points called C&C

(command & control)

━

Stealthy because C&C’s IP can rapidly change over time
━

Main problem: how does the botnet find the current C&C?

infected host
acting as C&C

botmaster

infected
host

infected
host

11

Domain Flux 3Domain Flux 3Domain Flux 3

•

Fast flux

is a method for discovering the IP address of
C&C and other resources the botnet may need
━

Botmaster registers a domain (say xyz.com) and controls the
DNS server ns.xyz.com

•

Botnet contacts nameserver ns.xyz.com and obtains
the current IP of the C&C (or multiple ones)
━

Performs a type-A lookup inside xyz.com

infected host
acting as C&C

botmaster

infected
host

infected
host

ns.xyz.com

12

Domain Flux 4Domain Flux 4Domain Flux 4

•

Main defense against botnet traffic is blocking
communication with the C&C
━

Fast Flux makes it harder since the C&C changes over time
and is load-balanced across several hosts

━

When C&C is blocked, botnet learns other locations quickly
•

Fast flux can also be used to serve phishing content
━

Suppose email arrives to user with a link to www77.xyz.com
━

Botnet uses DNS to serve this request from a variety of
compromised hosts

infected host
serves content

botmaster

user clicks on
email link

ns.xyz.com

page download

DNS A record for
www77.xyz.com

13

Domain Flux 5Domain Flux 5Domain Flux 5

•

Benefits to serving HTTP content using fast flux
━

Difficult to trace IPs hosting content or block malicious URLs
━

Botnet is failure resilient --

if hosts are cleaned or go offline,
there is automatic fail-over to other live hosts

━

Cheap in terms of bandwidth, simple to implement
•

However, there is a problem
━

Suppose ISP, email filter (e.g., SpamAssasin), or the registrar
block all references to xyz.com?

━

If xyz.com is taken down, the botnet freezes
•

Domain flux

aims to solve this issue

━

If current domain is blocked, botnet generates replacement
domain names and tries to resolve them to find the C&C

━

More difficult to trace and block

Nowadays, TLD servers auto-detect
fastflux and block suspected domains

in conjunction with the registrar

14

Domain Flux 6Domain Flux 6Domain Flux 6

•

Toy example:
━

Suppose botnet computers generate names using this
sequence: 1.com, 2.com, 3.com, 5.com, 8.com, 13.com, etc.

━

Current domain name stays in effect until it is blocked
━

Initially, botmaster registers 1.com and 34.com
━

When 1.com gets blocked, the botnet automatically switches
to 34.com, while botmaster registers 144.com, and so on

•

In reality, the botnet goes through thousands of failed
lookup attempts until it finds an active domain
━

Can be detected from a huge number of failed DNS queries
•

Domains may be too random to be human-produced
━

If so, machine-learning algorithms can be used to detect
infected hosts that are attempting domain flux

15

Domain Flux 7Domain Flux 7Domain Flux 7

•

In some cases, reverse engineering the random
generator allows one to predict future domain names
━

By registering these domains, botnets can be hijacked
━

Researchers have shown this is possible in B. Stone-Gross et
al., “Your botnet is my botnet: Analysis of a botnet takeover,”

 ACM CCS, 2009.
•

How large are botnets? Some examples:
━

BredoLab (2009): 30M hosts, 3.6B emails/day
━

Conficker (2008): 10.5M hosts, 10B emails/day
━

Cutwail (2007): 1.5M hosts, 74B emails/day
━

Torpig (paper above): 180K hosts (theft of 500K bank
accounts, credit cards)

━

Avalanche (2008-2016): phishing botnet w/500K hosts

16

Chapter 2: RoadmapChapter 2: RoadmapChapter 2: Roadmap

2.1 Principles of network applications
2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

━

SMTP, POP3, IMAP
2.5 DNS
2.6 P2P file sharing

17

Hybrid P2PHybrid P2PHybrid P2P

•

Napster (1999)
━

Application-layer protocol over TCP
━

Centralized directory server
•

Sequence of steps
━

Connect to server, login
━

Upload your IP/port + list of files
━

Give server keywords for search
━

Select “best”

answer (ping)
━

Download from peer
•

Single point of failure

•

Performance bottleneck
•

Target for litigation due to copyright infringement

Napster
server

peers

Alice

Bob
1

1

1

12

3

18

Decentralized P2PDecentralized P2PDecentralized P2P

•

Napster folded in 2002
━

Other P2P systems took
over (Gnutella, KaZaA,
BitTorrent, eDonkey)

•

Gnutella/0.4 (2001)
━

Public-domain protocol
━

Fully distributed design
•

Many Gnutella clients
implementing protocol
━

Limewire, Morpheus,
BearShare

•

How to find content?
•

Idea: construct a graph
━

Edge between peer X and
Y if there’s a TCP
connection between them

•

All active peers and
edges are called an
overlay network
━

Peer typically connected
to < 30 neighbors

•

Search proceeds by
flooding up to some depth
━

Limited-scope flooding

19

•

Queries are P2P
━

Inefficient due to huge
volumes of traffic

━

Average degree k, depth
of flood d, overhead (k-1)d

•

Downloads are P2P from
a single

user

━

Unreliable (peer departure
or failure kills transfer)

━

Inefficient (asymmetry of upstream/downstream bandwidth)
•

Join protocol (bootstrapping)
━

Find an entry peer X, flood its neighbors to obtain more
candidates, establish connections to those who accept

Decentralized P2PDecentralized P2PDecentralized P2P

Query
QueryHit

Query

Query

QueryHit

Q
ue

ry
Q

ue
ry

Q
ue

ry
H

it

HTTP

20

Hierarchical P2PHierarchical P2PHierarchical P2P

•

Gnutella/0.4 scaled to about
25K users and then choked

•

Alternative construction
proposed by KaZaA (2002)
━

Peer is either a group leader
(supernode) or assigned to one

•

Group leader tracks the
content of all its children,
acting like a mini-Napster
━

Peers query their group leaders, which flood the supernode
graph until some number of matches found

━

Query-hits not routed, but sent directly to original supernode

ordinary peer

group-leader peer

neighoring relationships
in overlay network

21

Hierarchical P2PHierarchical P2PHierarchical P2P

•

With 150 neighbors, this architecture is 150x more
efficient than Gnutella/0.4 in message overhead
━

With 389M downloads as of 2008, KaZaA was more popular
than Napster ever was, accounting for 50% of ISP
bandwidth in some regions and running 3M concurrent users

•

Gnutella/0.6 soon adopted the same structure
━

Scaled to 6.5M online users, 60M unique visitors per week
•

Additional features
━

Hashed file contents to identify exact version of files
━

Upload and request queuing at each user, rate-limiting
━

Parallel downloads from multiple peers
━

Support for crawl requests that reveal neighbors

22

Other P2POther P2POther P2P

•

Terminology: user holding
a complete file is a seed
━

Traditional systems
download only from seeds

━

Seed departs, transfer fails
•

Idea: let non-seeds grab
chunks from each other
━

Peers organize into a group
(torrent) based on the file
they’re downloading

•

Traditional systems
download files sequentially
━

Starvation for final blocks

•

Idea: maximize availability
━

Participants forced to serve
chunks they have to others

━

Rarest

chunk in torrent is
always replicated first

•

Known as BitTorrent

(2001)
━

Protocol with many
implementations

━

Requires trackers

to keep
torrent membership

━

Had more concurrent users
that YouTube and Facebook
combined

•

Built-in incentives to share
━

Rate-limiting (choking) based
on upload activity

23

Other P2POther P2POther P2P

•

Tor (Onion Router)
━

Anonymity network of peers
•

Each packet sent through a
random chain of P2P nodes
━

Final user relays packet
towards destination

━

Return packets processed
similarly along reverse path

•

Tor can be run thru an API
━

Extremely slow
━

Many exit points are known
and blocked by Google

•

Roughly 36M users

•

Freenet
━

Anonymous information
exchange, hiding identities
of communicating parties

•

Skype

chat
━

Video streaming services
either directly between
users or relayed through
non-firewalled peers

•

Distributed Hash Tables
━

General class of P2P
systems that map
information into high-

 dimensional search space
with guaranteed log(N)
bounds on delay to find
content

	CSCE 463/612�Networks and Distributed Processing�Spring 2025
	Homework #2
	Homework #2
	Homework #2
	Homework #2
	Homework #2
	Homework #2
	Chapter 2: Roadmap
	Domain Flux
	Domain Flux 2
	Domain Flux 3
	Domain Flux 4
	Domain Flux 5
	Domain Flux 6
	Domain Flux 7
	Chapter 2: Roadmap
	Hybrid P2P
	Decentralized P2P
	Decentralized P2P
	Hierarchical P2P
	Hierarchical P2P
	Other P2P
	Other P2P

