CSCE 463/612

Networks and Distributed Processing
Spring 2025

Transport Layer

Dmitri Loguinov
Texas A&M University

February 20, 2025

Chapter 3: Transport Layer

Our goals:

« Understand principles behind
transport layer services:

Application (5)

Multiolexina/demultiplexi Transport (4)
— Multiplexing/demultiplexing

- Reliable data transfer Netwc.)rk (3)
— Flow control Data-link (2)
- Congestion control Physical (1)

* Learn about transport layer
protocols in the Internet:
- UDP: connectionless transport
- TCP: connection-oriented transport

Chapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

- Segment structure

- Reliable data transfer

- Flow control

- Connection management
3.6 Principles of congestion control
3.7 TCP congestion control

Transport Services and Protocols

* Transport layer: logical pplk
communication O [RS
between processes on B] %
different hosts - e
- Relies on and enhances O —

network-layer services Rgetor

* Network layer: logical |
communication -8 angoon
between hosts CE Cg Ehyeii

- Consists of one
protocol — IP

Internet Transport-layer Protocols

Reliable, in-order
delivery: TCP

- Congestion control
- Flow control

- Connection setup

Unreliable, unordered
delivery: UDP

- No-frills extension of “best-
effort” IP

Services not available:
- Delay or loss guarantees
- Bandwidth guarantees

application

network

data link

physical

network

data link

physical

network

data link

7

o7

physical

network

N{ data link

physical

A etwork

O link

E2

<

application

network

data link

physical

Chapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

- Segment structure

- Reliable data transfer

- Flow control

- Connection management
3.6 Principles of congestion control
3.7 TCP congestion control

Multiplexing/Demultiplexing
Demultiplexing at receiver host:

Gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Delivering received segments
to correct socket

[| =socket (D =process

application application application
transport transport transport
network network network
link link link
physical v physical

host 1 host 2 host 3

How Demultiplexing Works

 Host receives |IP datagrams

- Each datagram has source IP
address and destination IP
address

« Each datagram carries one
transport-layer header
- Transport header starts with

source and destination port
numbers

« Kernel uses port numbers to
direct packets to appropriate
socket or reject the message

- Each port # is a 16-bit
unsigned integer (1-65535)

source port # dest port #

Transport header

application
data
(message)

TCP/UDP segment format

Connectionless Demultiplexing

 \When host receives UDP
segment:

- OS checks destination
port/IP in segment

— Directs segment to the
socket with a matching

 Create a SOCK_DGRAM
socket
 Bind the socket

- Server: specify a well-known
port (e.g., 53 for DNS)

= Client: bind to port 0 (OS combination if socket is
assigns next available #) open: rejects otherwise
« Use SendtO(), reCVfrom() e |IP datagrams with
« Target UDP socket is different source IP
identified by a 2-tuple: addresses and/or source
(dest IP address, dest port' port numbers may be
number) directed to the same

socket! 9

Connectionless Demultiplexing (Cont

SP = source port, DP = destination port

SP: 6428 SP: 6428
DP: 9157 DP: 5775
C-2>A C->B
SP: 9157 SP: 5775
client DP: 6428 server DP: 6428 client
IP: A A>C IP: C B>C IP: B

SP provides “return address”

10

Connection-Oriented Demultiplexing

 TCP socket identified « Servers: possible to have

by a 4-tuple: multiple TCP sockets with
— Source IP address same port number:

- Source port number - Each socket identified by its
- Destination IP address own 4-tuple

- Destination port number * VWeb servers have
Receiver host uses all different sockets for each
four values to find connecting client
appropriate socket = All'are on port 80

Clients: each socket - Non-persistent HTTP may

have different socket for

must have unique port each request

11

Connection-Oriented Demultiplexing (Cont

Web server spawns a new process per connection

port 80
— 5775 9153
45 5775 N D 45—5
SP: 5775

DP: 80

S-IP:B

D-IP:C

SP: 5775 SP: 9153
client DP: 80 server DP: 80 client
IP:A | SIP:A IP: C S-IP: B IP: B
D-IP:C D-IP:C

SP = source port, DP = destination port;
S-IP = source IP, D-IP = destination IP

12

Connection-Oriented Demultiplexing (Cont

Web server spawns a new thread per connection

5775

9153

client
IP: A

SP = source port, DP = destination port;

SP: 5775

DP: 80

S-IP: A

D-IP:C

port 80
— 5775
SP: 5775
DP: 80
S-IP: B
D-IP:C
N
SP: 9153
DP: 80
server
IP- C S-IP: B
D-IP:C

S-IP = source IP, D-IP = destination IP

Client
IP:B

13

Chapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

- Segment structure

- Reliable data transfer

- Flow control

- Connection management
3.6 Principles of congestion control
3.7 TCP congestion control

14

UDP: User Datagram Protocol [RFC 768]

« Standardized in 1980 Why is there a UDP?
- Hasn't changed since e« Low overhead: no
» Best-effort service connection establishment
 UDP segments may be: or retransmission
- Lost or corrupted « Simplicity: no connection
- Delivered out of order to state at sender/receiver
the application » Small segment header
e Connectionless: .

No congestion control

- For short transfers, this is
completely unnecessary

- |n other cases, desirable
to control rate directly from
application 15

- No handshaking between
UDP sender and receiver

- Each UDP segment
handled independently of
others

UDP: More

Length (in bytes) of

UDP segment,
including header

Often used for
streaming multimedia
or online gaming

- Loss tolerant

- Rate/delay sensitive

Other UDP uses
- DNS

- SNMP

- NFSv2 (1989)

Reliable transfer over

UDP: add reliability at

application layer

- Application-specific
error recovery

< 32 bits >

source port # dest port #

length checksum

Application
data
(message)

UDP segment format

16

UDP Checksum

Goal: detect “errors” (e.qg., flipped bits) in transmitted
segment (packet)

Sender (simplified): Receiver:

« Set checksum = 0 in hdr « Sum all 16-bit words in entire
received segment (including the
checksum field in the header)

« Treat packet contents
as a sequence of 16-bit
integers (padded with Os « Check if result = Oxffff
to 2-byte boundary) - NO - error detected

« Checksum: add all - YES - no error detected
integers, then XOR with « |dea: (x XOR O0xffff) + x = Oxffff

Oxffit * Are undetected errors possible
« Sender puts checksum nonetheless?
value into UDP

checksum field i

UDP Checksum Example

 Note on 1's complement addition:

- When adding numbers, a carryout from the most significant
bit needs to be added to the result

« Example: add two 16-bit integers

1110011001100110
1101010101010101

wraparound@1011101110111011

sum 1011101110111100
checksum 0100010001000011

18

UDP Checksum (Cont

« How many corrupted bits does UDP detect?

Example of undetected single-bit corruption?
- Not possible

Example of undetected 2-bit corruption?
- Two words (0, 5) result in sum =95

- Suppose 0 is corrupted to become 1 and 5 is corrupted to
become 4, then the checksum is the same

Example of undetected 3-bit corruption w/two words?
- Two words (1, 1) =2 (0, 2)

What if the transmitted words are O and 127

- Can two-bit corruption produce the same checksum?

- If yes, how many ways can (0,12) be affected by 2-bit
corruption so as to avoid detection?

19

Wrap-up

 |Is there a pair of integers (x,y) that allow the UDP
checksum to detect any 2-bit corruption?

« Data-link and physical layers are often assumed to
have their own checksums and error correction

- Why is transport-level checksum important then?
 Reasons:

1) Lower layers do not always run error checking
- Even then, implementation bugs may affect the result

2) Corruption may occur in router RAM or faulty
hardware, outside the control of data-link protocols

20

	CSCE 463/612�Networks and Distributed Processing�Spring 2025
	Chapter 3: Transport Layer
	Chapter 3: Roadmap
	Transport Services and Protocols
	Internet Transport-layer Protocols
	Chapter 3: Roadmap
	Multiplexing/Demultiplexing
	How Demultiplexing Works
	Connectionless Demultiplexing
	Connectionless Demultiplexing (Cont)
	Connection-Oriented Demultiplexing
	Connection-Oriented Demultiplexing (Cont)
	Connection-Oriented Demultiplexing (Cont)
	Chapter 3: Roadmap
	UDP: User Datagram Protocol [RFC 768]
	UDP: More
	UDP Checksum
	UDP Checksum Example
	UDP Checksum (Cont)
	Wrap-up

