
CSCE 463/612: Networks and Distributed Processing
Homework 1 Part 2 (25 pts)

Due date: 9/3/24

1. Problem Description
You will now expand into downloading multiple URLs from an input file using a single thread.
To ensure politeness, you will hit only unique IPs and check the existence of robots.txt. Robot
exclusion is an informal standard that allows webmasters to specify which directories/files on the
server are prohibited from download by non-human agents. See http://www.robotstxt.org/ and
https://en.wikipedia.org/wiki/Robots_exclusion_standard for more details. To avoid hanging the
code on slow downloads, you will also have to abort all pages that take longer than 10 seconds1
or occupy more than 2 MB (for robots, this limit is 16 KB).

1.1. Code (25 pts)

The program must now accept either one or two arguments. In the former case, it implements the
previous functionality; in the latter case, the first argument indicates the number of threads to run
and the second one the input file:

hw1.exe 1 URL-input.txt

If the number of threads does not equal one, you should reject the parameters and report usage
information to the user. Similarly, if the file does not exist or cannot be successfully read, the
program should complain and quit. Assuming these checks pass, you should load the file into
RAM and split it into individual URLs (one line per URL). You can use fopen, fgets, fclose
(or their ifstream equivalents) to scan the file one-line-at-a-time. A faster approach is load the
entire input into some buffer and then separately determine where each line ends. Use C-style
fread or an even-faster ReadFile for this purpose (the sample HTML-parser project shows us-
age of ReadFile). In the former case, note that the file must be opened in binary mode (e.g., us-
ing “rb” in fopen) to avoid unnecessary translation that may corrupt the URLs.

To avoid redundant DNS lookups, make sure that only unique hosts make it to gethostbyname.
Combining this with an earlier discussion of politeness and robots leads to the following logic:

Parse URL  Check host is unique  DNS lookup  Check IP is unique  Request robots 
Check HTTP code  Request page  Check HTTP code  Parse page

Note that robot existence should be verified using a HEAD request. This ensures that you receive
only the header rather than an entire file. Codes 4xx indicate that the robot file does not exists
and the website allows unrestricted crawling. Any other code should be interpreted as preventing
further contact with that host. Your printouts should begin with indication that you read the file
and its size, followed by the following trace:

1 Your previous usage of select constrained each recv to 10 seconds, but allowed unbounded delays across the
page. In these cases, a website feeding one byte every 9 seconds could drag forever.

 1

http://www.robotstxt.org/
https://en.wikipedia.org/wiki/Robots_exclusion_standard

Opened URL-input.txt with size 66152005
URL: http://www.symantec.com/verisign/ssl-certificates
 Parsing URL... host www.symantec.com, port 80
 Checking host uniqueness... passed
 Doing DNS... done in 139 ms, found 104.69.239.70
 Checking IP uniqueness... passed
 Connecting on robots... done in 5 ms
 Loading... done in 57 ms with 213 bytes
 Verifying header... status code 200
URL: http://www.weatherline.net/
 Parsing URL... host www.weatherline.net, port 80
 Checking host uniqueness... passed
 Doing DNS... done in 70 ms, found 216.139.219.73
 Checking IP uniqueness... passed
 Connecting on robots... done in 11 ms
 Loading... done in 61 ms with 179 bytes
 Verifying header... status code 404
 * Connecting on page... done in 3020 ms
 Loading... done in 87 ms with 10177 bytes
 Verifying header... status code 200
 + Parsing page... done in 0 ms with 16 links
URL: http://abonnement.lesechos.fr/faq/
 Parsing URL... host abonnement.lesechos.fr, port 80
 Checking host uniqueness... passed
 Doing DNS... done in 1 ms, found 212.95.72.31
 Checking IP uniqueness... passed
 Connecting on robots... done in 138 ms
 Loading... done in 484 ms with 469 bytes
 Verifying header... status code 404
 * Connecting on page... done in 4335 ms
 Loading... done in 899 ms with 57273 bytes
 Verifying header... status code 200
 + Parsing page... done in 1 ms with 63 links

Note that you no longer need to print the request after the port. Uniqueness-verification steps and
the robot phase are new and highlighted in bold. If you already have a function that connects to a
server, downloads a given URL, and verifies the HTTP header, you can simply call it twice to
produce both robots and page-related statistics. The function needs to accept additional parame-
ters that specify a) the HTTP method (i.e., HEAD or GET); b) valid HTTP codes (i.e., 2xx for
pages, 4xx for robots); c) maximum download size (i.e., 2 MB for pages, 16 KB for robots); and
d) presence of an asterisk in the output. If any of the steps fails, you should drop the current URL
and move on to the next:

URL: http://allafrica.com/stories/201501021178.html
 Parsing URL... host allafrica.com, port 80
 Checking host uniqueness... failed
URL: http://architectureandmorality.blogspot.com/
 Parsing URL... host architectureandmorality.blogspot.com, port 80
 Checking host uniqueness... passed
 Doing DNS... done in 19 ms, found 216.58.218.193
 Checking IP uniqueness... failed
URL: http://aviation.blogactiv.eu/
 Parsing URL... host aviation.blogactiv.eu, port 80
 Checking host uniqueness... passed
 Doing DNS... done in 218 ms, found 178.33.84.148
 Checking IP uniqueness... passed
 Connecting on robots... done in 9118 ms
 Loading... failed with 10060 on recv
URL: http://zjk.focus.cn/
 Parsing URL... host zjk.focus.cn, port 80
 Checking host uniqueness... passed
 Doing DNS... done in 1135 ms, found 101.227.172.52
 Checking IP uniqueness... passed
 Connecting on robots... done in 367 ms
 Loading... done in 767 ms with 140 bytes

 2

 Verifying header... status code 403
 * Connecting on page... done in 3376 ms
 Loading... failed with slow download
URL: http://azlist.about.com/a.htm
 Parsing URL... host azlist.about.com, port 80
 Checking host uniqueness... passed
 Doing DNS... done in 81 ms, found 207.126.123.20
 Checking IP uniqueness... passed
 Connecting on robots... done in 5 ms
 Loading... failed with exceeding max
URL: http://apoyanocastigues.mx/
 Parsing URL... host apoyanocastigues.mx, port 80
 Checking host uniqueness... passed
 Doing DNS... done in 57 ms, found 23.23.109.126
 Checking IP uniqueness... passed
 Connecting on robots... done in 49 ms
 Loading... done in 2131 ms with 176 bytes
 Verifying header... status code 404
 * Connecting on page... done in 3051 ms
 Loading... failed with exceeding max
URL: http://ba.voanews.com/media/video/2563280.html
 Parsing URL... host ba.voanews.com, port 80
 Checking host uniqueness... passed
 Doing DNS... done in 11 ms, found 128.194.178.217
 Checking IP uniqueness... passed
 Connecting on robots... done in 2 ms
 Loading... done in 490 ms with 2436 bytes
 Verifying header... status code 404
 * Connecting on page... done in 3001 ms
 Loading... done in 50 ms with 2850 bytes
 Verifying header... status code 408

In the last example, the downloaded page does not result in success codes 2xx, which explains
why parsing was not performed. As the text may scroll down pretty fast, you can watch for * and
+ to easily track how often the program attempts to load the target page and parse HTML, re-
spectively.

1.2. Uniqueness

To maintain previously seen hosts and IPs, you can use the following verification logic:

#include <set>
#include <string>
using namespace std;

//---------
DWORD IP = inet_addr ("128.194.135.72");
set<DWORD> seenIPs;
seenIPs.insert(IP);
...
//---------
set<string> seenHosts;

// populate with some initial elements
seenHosts.insert("www.google.com");
seenHosts.insert("www.tamu.edu");

string test = "www.cse.tamu.edu";
auto result = seenHosts.insert (test);

if (result.second == true)
 // unique host
else
 // duplicate host

 3

1.3. Page Buffers

Make sure to continue using a dynamic-buffering scheme for received pages in Socket::Read.
Even though the maximum page size is now fixed, do not hardwire 2-MB buffers into your re-
ceiver. When you scale this program to 5000 threads in Part 3, such inefficient RAM usage may
become problematic. Similarly, when you reuse the Socket class for the next connection, delete
the old buffer if it is larger than 32 KB and start again with INITIAL_BUF_SIZE.

 4

 5

 463/612 Homework 1 Grade Sheet (Part 2)

Name: ______________________________

Function Points Break

down
Item Deduction

1 Fails to show input file size
1 Incorrect URLs being crawled
1 Incorrect DNS results
1 Fails to print host checks
1 Fails to print IP checks
1 No timing of robots connect()
1 No timing of robots recv()
1 Incorrect robots page size
1 Incorrect robots HTTP status

Output 11

2 Incorrect page download results
2 Fails to load multiple pages
2 Allows duplicate hosts
2 Allows duplicate IPs

Logic 8

2 Loads robots-prohibited pages
1 Does not notify of connect failure
1 Does not notify of recv failure
1 Does not notify of non-HTTP reply
1 Fails to report slow download

Robot errors 5

1 Fails to report exceeding max
Other 1 1 Missing files for compilation

Additional deductions are possible for memory leaks and crashing.

Total points: ________________

	1. Problem Description
	1.1. Code (25 pts)
	1.2. Uniqueness
	1.3. Page Buffers

