
CSCE 463/612: Networks and Distributed Processing
Homework 2 (100 pts)

Due date: 10/10/24

1. Purpose
Understand how to design non-ASCII application-layer protocols and provide primitive reliable
transport over UDP.

2. Description
Your goal is to implement a program that issues recursive queries to a user-provided DNS server
and parses its responses. For testing while on campus (or VPN), you can use IRL servers
128.194.135.79 (IIS) and 128.194.135.85 (BIND). The latter returns the more-verbose answers
shown below. You can also run your own DNS server on localhost, keeping in mind that
Wireshark needs to be running on the loopback interface. Public servers include your ISP’s DNS
server, as well as Google’s 8.8.8.8 and 8.8.4.4.

2.1. Code (75 pts)

Your program must accept two command-line arguments (if they are not present, report usage
and quit). The first argument is the lookup string, which may be a hostname or IP, and the
second is the DNS server IP to which the query is going. Examples:

hw2.exe www.xyz.com 128.194.135.79
hw2.exe 128.194.135.66 8.8.8.8

Your code must directly use UDP and parse DNS responses without any shortcuts (e.g., Platform
SDK, boost, or other libraries). It is acceptable to use STL strings to assemble responses
scattered across the packet, although a sequence of memcpy operations into a separate buffer is
the preferred technique if you are comfortable with pointers.

For successful execution, the output format is provided below using a few examples from prior
years. The Internet is constantly changing, so your results may be different, in which case
nslookup should be used to verify correctness. It is also advisable to find a variety of additional
test cases and perform a more exhaustive evaluation than given here.

Lookup : yahoo.com
Query : yahoo.com, type 1, TXID 0x0001
Server : 128.194.135.85

Attempt 0 with 27 bytes... response in 448 ms with 273 bytes
 TXID 0x0001, flags 0x8180, questions 1, answers 3, authority 5, additional 6
 succeeded with Rcode = 0
 ------------ [questions] ----------
 yahoo.com type 1 class 1
 ------------ [answers] ------------
 yahoo.com A 98.139.183.24 TTL = 1800
 yahoo.com A 206.190.36.45 TTL = 1800
 yahoo.com A 98.138.253.109 TTL = 1800
 ------------ [authority] ----------
 yahoo.com NS ns4.yahoo.com TTL = 172800

 1

 yahoo.com NS ns3.yahoo.com TTL = 172800
 yahoo.com NS ns5.yahoo.com TTL = 172800
 yahoo.com NS ns2.yahoo.com TTL = 172800
 yahoo.com NS ns1.yahoo.com TTL = 172800
 ------------ [additional] ---------
 ns1.yahoo.com A 68.180.131.16 TTL = 172800
 ns2.yahoo.com A 68.142.255.16 TTL = 172800
 ns3.yahoo.com A 203.84.221.53 TTL = 172800
 ns4.yahoo.com A 98.138.11.157 TTL = 172800
 ns5.yahoo.com A 119.160.247.124 TTL = 172800

Lookup : 128.194.138.19
Query : 19.138.194.128.in-addr.arpa, type 12, TXID 0xAA03
Server : 128.194.135.85

Attempt 0 with 45 bytes... response in 1099 ms with 199 bytes
 TXID 0xAA03 flags 0x8180 questions 1 answers 2 authority 3 additional 3
 succeeded with Rcode = 0
 ------------ [questions] ----------
 19.138.194.128.in-addr.arpa type 12 class 1
 ------------ [answers] ------------
 19.138.194.128.in-addr.arpa PTR mailbox.cs.tamu.edu TTL = 3600
 19.138.194.128.in-addr.arpa PTR imap.cs.tamu.edu TTL = 3600
 ------------ [authority] ----------
 194.128.in-addr.arpa NS ns3.tamu.edu TTL = 86399
 194.128.in-addr.arpa NS ns1.tamu.edu TTL = 86399
 194.128.in-addr.arpa NS ns2.tamu.edu TTL = 86399
 ------------ [additional] ---------
 ns1.tamu.edu A 128.194.254.4 TTL = 28800
 ns2.tamu.edu A 128.194.254.5 TTL = 172800
 ns3.tamu.edu A 192.195.87.5 TTL = 172800

Lookup : www.google.com
Query : www.google.com, type 1, TXID 0x34C9
Server : 8.8.8.8

Attempt 0 with 32 bytes... response in 25 ms with 112 bytes
 TXID 0x34C9 flags 0x8180 questions 1 answers 5 authority 0 additional 0
 succeeded with Rcode = 0
 ------------ [questions] ----------
 www.google.com type 1 class 1
 ------------ [answers] ------------
 www.google.com A 74.125.227.244 TTL = 299
 www.google.com A 74.125.227.243 TTL = 299
 www.google.com A 74.125.227.240 TTL = 299
 www.google.com A 74.125.227.241 TTL = 299
 www.google.com A 74.125.227.242 TTL = 299

Lookup : www.dhs.gov
Query : www.dhs.gov, type 1, TXID 0x993A
Server : 128.194.135.79

Attempt 0 with 29 bytes... response in 177 ms with 118 bytes
 TXID 0x993A flags 0x8180 questions 1 answers 3 authority 0 additional 0
 succeeded with Rcode = 0
 ------------ [questions] ----------
 www.dhs.gov type 1 class 1
 ------------ [answers] ------------
 www.dhs.gov CNAME www.dhs.gov.edgekey.net TTL = 3600
 www.dhs.gov.edgekey.net CNAME e6485.dscb.akamaiedge.net TTL = 300
 e6485.dscb.akamaiedge.net A 23.200.36.56 TTL = 20

Lookup : www.dhs.gov
Query : www.dhs.gov, type 1, TXID 0x0300
Server : 128.194.135.85

Attempt 0 with 29 bytes... response in 6939 ms with 414 bytes
 TXID 0x0300 flags 0x8180 questions 1 answers 3 authority 8 additional 8
 succeeded with Rcode = 0

 2

 ------------ [questions] ----------
 www.dhs.gov type 1 class 1
 ------------ [answers] ------------
 www.dhs.gov CNAME www.dhs.gov.edgekey.net TTL = 3600
 www.dhs.gov.edgekey.net CNAME e6485.dscb.akamaiedge.net TTL = 300
 e6485.dscb.akamaiedge.net A 23.200.36.56 TTL = 20
 ------------ [authority] ----------
 dscb.akamaiedge.net NS n4dscb.akamaiedge.net TTL = 4000
 dscb.akamaiedge.net NS n3dscb.akamaiedge.net TTL = 4000
 dscb.akamaiedge.net NS n6dscb.akamaiedge.net TTL = 4000
 dscb.akamaiedge.net NS n0dscb.akamaiedge.net TTL = 4000
 dscb.akamaiedge.net NS n7dscb.akamaiedge.net TTL = 4000
 dscb.akamaiedge.net NS n1dscb.akamaiedge.net TTL = 4000
 dscb.akamaiedge.net NS n5dscb.akamaiedge.net TTL = 4000
 dscb.akamaiedge.net NS n2dscb.akamaiedge.net TTL = 4000
 ------------ [additional] ---------
 n0dscb.akamaiedge.net A 64.86.135.233 TTL = 4000
 n1dscb.akamaiedge.net A 88.221.81.194 TTL = 6000
 n2dscb.akamaiedge.net A 165.254.51.172 TTL = 8000
 n3dscb.akamaiedge.net A 23.5.164.32 TTL = 4000
 n4dscb.akamaiedge.net A 165.254.51.176 TTL = 6000
 n5dscb.akamaiedge.net A 165.254.51.167 TTL = 8000
 n6dscb.akamaiedge.net A 165.254.51.175 TTL = 4000
 n7dscb.akamaiedge.net A 165.254.51.169 TTL = 6000

okup : randomA.irl Lo
Query : randomA.irl, type 1, TXID 0x8601
Server : 128.194.135.82

Attempt 0 with 29 bytes... response in 2 ms with 118 bytes
 TXID 0x8601 flags 0x8400 questions 5 answers 1 authority 0 additional 0
 succeeded with Rcode = 0
 ------------ [questions] ----------
 randomA.irl type 1 class 1
 Episode.IV type 1 class 3
 A.NEW.HOPE type 1 class 3
 civil.war type 1 class 3
 spaceships type 1 class 3
 ------------ [answers] ------------
 random.irl A 1.1.1.1 TTL = 30

To begin with, you should report the original string provided by the user, the query that goes to

pt should be labeled with the number of bytes you send into the socket. If the network

Next, show the values in the fixed header, where the TXID and flags are output in hex and the

 types.

You must differentiate between successful lookups and failures, as well as detect Windows API

ore
examples:

DNS, and the server’s IP. For reverse DNS lookups, the query should have the special format we
discussed in class. Following the query, you also need to specify its type – either DNS_A (1) or
DNS_PTR (12) – and the TXID printed in hex and padded to four digits (use %.4X in printf).

Each attem
produces any errors, report this together with a WSAGetLastError() code and quit. Otherwise,
print the number of milliseconds spent in sendto/recvfrom and the number of bytes in the
response.

other four fields in decimal. Parse the rest of the packet in each of the sections, grabbing
information from CNAME, A, NS, and PTR responses and skipping over all other record
Note that indentation given in the examples is required.

errors, report them to the user, and gracefully terminate the program. If the server does not
respond within 10 seconds, perform a retransmission, up to a maximum of three attempts. M

 3

Lookup : google.c
Query : google.c, type 1, TXID 0xC101
Server : 128.194.135.85

Attempt 0 with 26 bytes... response in 1670 ms with 101 bytes
 TXID 0xC101 flags 8183 questions 1 answers 0 authority 1 additional 0
 failed with Rcode = 3

Lookup : 12.190.0.107
Query : 107.0.190.12.in-addr.arpa, type 12, TXID 0xB621
Server : 128.194.135.85

Attempt 0 with 43 bytes... response in 8619 ms with 43 bytes
 TXID 0xB621 flags 0x8182 questions 1 answers 0 authority 0 additional 0
 failed with Rcode = 2

Lookup : random2.irl
Query : random2.irl, type 1, TXID 0xA445
Server : 128.194.135.82

Attempt 0 with 29 bytes... response in 1 ms with 512 bytes

TXID 0xA445 flags 0xEFEF questions 61423 answers 61423 authority 61423 additional 61423
 failed with Rcode = 15

Lookup : random9.irl
Query : random9.irl, type 1, TXID 0x0871
Server : 128.194.135.82

Attempt 0 with 29 bytes... response in 1 ms with 55 bytes
 TXID 0x0872 flags 0x8400 questions 1 answers 1 authority 0 additional 0
 ++ invalid reply: TXID mismatch, sent 0x0871, received 0x0872

Lookup : randomB.irl
Query : randomB.irl, type 1, TXID 0xB09C
Server : 128.194.135.82

Attempt 0 with 29 bytes... socket error 10040

Lookup : google.com
Query : google.com, type 1, TXID 0x0813
Server : 128.194.135.9

Attempt 0 with 28 bytes... timeout in 10000 ms
Attempt 1 with 28 bytes... timeout in 10001 ms
Attempt 2 with 28 bytes... timeout in 10000 ms

Note that lines beginning with ++ are indicative of malicious and/or corrupted responses, with
 such cases are discussed below.

8.194.135.82
of tweaking it applies to outgoing packets. Note that this server sends
nses, which are blocked by the TAMU VPN. To get around this

…,

packet filled with 0xEF, randomA.irl sends multiple questions, and randomB.irl produces a

one example random9.irl shown above. More

2.2. Report (25 pts)

For the report, you should perform forensic investigation of our custom server 12
and determine what type
malformatted DNS respo
problem, you can test your code from a class server using Remote Desktop or download the
custom DNS server from the course website and run it locally on your machine/Azure/ts/ts2.

The custom server accepts queries for strings in the form of randomX.irl, where X ∈ (0, 1,
9, A, B). For example, random9.irl increments your TXID by one, random2.irl generates a

 4

response larger than the maximum allowed by DNS (to obtain 10040 in recvfrom, attempt
reading the packet into a 512-byte buffer). The traces for these four cases are already shown
above. You should be able to handle them as part of normal operation to get the full 75 point

For the report and its 25 points, you need to demonstrate that your program can identify nine
additional ++ errors:

s.

: jump beyond packet boundary

’t have the full 10 bytes)

++ invalid reply: packet smaller than fixed DNS header
++ invalid section: not enough records (e.g., declared 5 answers but only 3 found)
++ invalid record
++ invalid record: truncated name (e.g., “6 goog” and the packet ends)
++ invalid record: truncated RR answer header (i.e., don
++ invalid record: truncated jump offset (e.g., 0xC0 and the packet ends)
++ invalid record: jump into fixed DNS header
++ invalid record: jump loop

U ed in each of
 the ++ error it

1.irl.

 three types of ++ errors produced by this query that
cases above and document your handling of each. Since

these responses are randomized, you will need to run your program multiple times.

everal times to see what
happens. It is not enough (or even necessary) to report the errors your code detects;

++ invalid record: RR value length stretches the answer beyond packet

sing experimentation and analysis, determine what types of corruption is perform
the cases below and show the corresponding traces from your program with
detected.

1. (8 pts) Case 1: random0.irl, random3.irl, random5.irl, and random6.irl.

2. (2 pts) Case 2: random

3. (3 pts) Case 3: random7.irl.

4. (12 pts) Case 4: random4.irl. Show
are not present in any of the

The cases above should cover all nine ++ errors stated earlier.

5. (extra credit, 10 pts): Figure out the algorithm behind random8.irl’s response. This query
generates randomized replies, so you will need to run it s

instead, you should explain the essence of what the server is doing to the packet so that
someone else can write code to implement something similar.

2.3. Overview

Organization of your program may look similar to the one in Figure 1.

 5

Input

IP
Response

parser

UDP sender
and receiver

Decide query type Query type PTR

host

Query type A
Query

constructor

User output

response

Figure 1. Flow-chart of the program.

To decide whether the query is an IP or hostname, pass it through inet_addr(). If this function
succeeds, proceed with a type-PTR query. Otherwise, use type-A.

After a UDP socket is opened, you must call bind() with port 0 to let the OS select the next
available port for you:

SOCKET sock = socket (AF_INET, SOCK_DGRAM, 0);
// handle errors
struct sockaddr_in local;
memset(&local, 0, sizeof(local));
local.sin_family = AF_INET;
local.sin_addr.s_addr = INADDR_ANY;
local.sin_port = htons(0);
if (bind (sock, (struct sockaddr*)&local, sizeof(local)) == SOCKET_ERROR)

// handle errors

Note that local.sin_addr specifies which local IP address you are binding the socket to, which
may be important if you have multiple network cards in the computer. Since you do not have a
preference in this homework, INADDR_ANY allows you to receive packets on all physical
interfaces of the system.

There is no connect phase and sockets can be used immediately after binding:

struct sockaddr_in remote;
memset(&remote, 0, sizeof(remote));
remote.sin_family = AF_INET;
remote.sin_addr = inet_addr(...); // server’s IP
remote.sin_port = htons(53); // DNS port on server
if (sendto (sock, buf, size, 0, (struct sockaddr*)&remote, sizeof(remote)) == SOCKET_ERROR)

// handle errors

The fixed DNS header is provided to you in the book and class slides. It is 12 bytes long and
consists of six fields. Fill in the ID field, flags, and number of questions. Set the other three fields
to zero. Following these 12 bytes is the question record described next.

Each query includes a variable-size question and a trailing fixed-size header shown in Figure 2.
The question string is separated into labels based on the locations of the dot. For example,

 6

“www.google.com” becomes str1 = “www”, str2 = “google”, str3 = “com”. The lengths of the
corresponding strings are 3, 6, and 3 bytes. The last label has size 0 as shown in the figure.

str1 str1 size

1 byte

Query type Query class

2 bytes 2 bytes

strn strn size

1 byte

0 …

question
Figure 2. Question format.

Query types are integer numbers specified in RFC 1035. Several useful constants:

/* DNS query types */
#define DNS_A 1 /* name -> IP */
#define DNS_NS 2 /* name server */
#define DNS_CNAME 5 /* canonical name */
#define DNS_PTR 12 /* IP -> name */
#define DNS_HINFO 13 /* host info/SOA */
#define DNS_MX 15 /* mail exchange */
#define DNS_AXFR 252 /* request for zone transfer */
#define DNS_ANY 255 /* all records */

There is only one useful query class:

/* query classes */
#define DNS_INET 1

To receive UDP responses from the server, use function recvfrom(). Each call to recvfrom()
results in retrieval of one UDP packet that corresponds to the answer. It is therefore not
necessary to form a loop around recvfrom() as in homework #1. Also note that the returned
data is binary and cannot be directly uploaded into STL strings. To see socket error 10040 on
randomB.irl, make sure to allocate a static buffer of MAX_DNS_SIZE = 512 bytes and attempt
receipt into it.

Using a combination of experiments with Wireshark and RFCs 1034, 1035, your responsibility is
to understand how the response is structured and write a parser for it. You may also find the
following site useful: http://www.networksorcery.com/enp/protocol/dns.htm. It is recommended
that you use Wireshark filters (a box near the top of the screen) to only display information
related to DNS to avoid clutter on the screen (e.g., by typing “dns && ip.addr ==
128.194.135.79” into the filter). Also note that Wireshark may have difficulty reading
encrypted packets over VPN.

You should support both compressed and uncompressed answers. To recognize compression,
check the string-size byte for being larger than 0xC0 (i.e., the two most-significant bits are 11).
For this to work correctly, the byte needs to be converted to an unsigned char. If there is
compression, the 14 bits following the binary 11 indicate the jump offset from the beginning of
the packet. See the slides for more discussion.

 7

2.4. Packet Loss

Since not all UDP packets are reliably delivered to your local DNS server, implement a simple
retransmission scheme based on a timer. After each request is sent, enter into a wait state until
you either receive a response from your local DNS server or the timer expires (use 10-second
timeouts):

#define MAX_ATTEMPTS 3

while (count++ < MAX_ATTEMPTS)
{
 // send request to the server
 ...
 // get ready to receive

fd_set fd;
FD_ZERO (&fd); // clear the set
FD_SET (dns_sock, &fd); // add your socket to the set
int available = select (0, &fd, NULL, NULL, &tp);

if (available > 0)
{
 recvfrom (...);
 // parse the response
 // break from the loop
}
// error checking here

}

2.5. Header Caveats

All 2-byte header fields are coded in network byte order and must be converted to/from your
local host notation. The process of assembling flags involves ORing them, where each individual
bit-flag is given by:

/* flags */
#define DNS_QUERY (0 << 15) /* 0 = query; 1 = response */
#define DNS_RESPONSE (1 << 15)

#define DNS_STDQUERY (0 << 11) /* opcode - 4 bits */

#define DNS_AA (1 << 10) /* authoritative answer */
#define DNS_TC (1 << 9) /* truncated */
#define DNS_RD (1 << 8) /* recursion desired */
#define DNS_RA (1 << 7) /* recursion available */

For example, to set flags in outgoing packets, use

htons(DNS_QUERY | DNS_RD | DNS_STDQUERY)

While two of these flags are zero and can be omitted, it is common practice to specify them
anyway. This increases transparency of what you are doing.

Avoid manipulating individual bytes and instead use classes to write into binary arrays:

#pragma pack(push,1) // sets struct padding/alignment to 1 byte
class QueryHeader {

USHORT qType;
USHORT qClass;

};

 8

class FixedDNSheader {
USHORT ID;
USHORT flags;
USHORT questions;
USHORT answers;
...

};
#pragma pack(pop) // restores old packing

char host [] = “www.google.com”;
int pkt_size = strlen(host) + 2 + sizeof(FixedDNSheader) + sizeof(QueryHeader);

char *buf = new char [pkt_size];

FixedDNSheader *fdh = (FixedDNSheader *) buf;
QueryHeader *qh = (QueryHeader*) (buf + pkt_size – sizeof(QueryHeader));

// fixed field initialization
fdh->ID = ...
fdh->flags = ...
...
qh->qType = ...
qh->qClass = ...

makeDNSquestion(fdh + 1, host);
sendto (sock, buf, ...);
delete buf;

A few common result codes are the following:

#define DNS_OK 0 /* success */
#define DNS_FORMAT 1 /* format error (unable to interpret) */
#define DNS_SERVERFAIL 2 /* can’t find authority nameserver */
#define DNS_ERROR 3 /* no DNS entry */
#define DNS_NOTIMPL 4 /* not implemented */
#define DNS_REFUSED 5 /* server refused the query */

2.6. Reading Raw Buffers

The proper way of working with fixed-size headers is to directly cast pointers into receive
buffers instead of parsing results byte-by-byte. For example:

#define MAX_DNS_SIZE 512 // largest valid UDP packet

#pragma pack(push,1) // sets struct padding/alignment to 1 byte
class DNSanswerHdr {

u_short type;
u_short class;
u_int TTL;
u_short len;

};
#pragma pack(pop) // restores old packing

char buf [MAX_DNS_SIZE];
struct sockaddr_in response;

if (recvfrom (sock, buf, MAX_DNS_SIZE, 0, (struct sockaddr*) &response, ...) == ...)

// error processing

// check if this packet came from the server to which we sent the query earlier
if (response.sin_addr != remote.sin_addr || response.sin_port != remote.sin_port)

// bogus reply, complain

FixedDNSheader *fdh = (FixedDNSheader*) buf;
// read fdh->ID and other fields
...
// parse questions and arrive to the answer section

 9

// suppose off is the current position in the packet
DNSanswerHdr *dah = (DNSanswerHdr *)(buf + off);
// read dah->len and other fields

 10

 11

CSCE 463/612 Homework 2

Name: ______________________________

Function Points Break

down
Item Deduction

2 No usage if incorrect arguments
6 Incorrect summary (lookup/query/server)
6 Incorrect attempt info (sent/received bytes, delay)
12 Incorrect fixed header fields or their format
2 Does not report successful Rcode
6 Incorrect questions (name/type/class)
8 Incorrect answers (name/type/value/TTL)
8 Incorrect authority (name/type/value/TTL)

Printouts 58

8 Incorrect additional (name/type/value/TTL)
3 Does not reject error Rcodes (e.g., random2.irl)
3 Improper or absent retransmission
3 Does not reject bogus TXID (e.g., random9.irl)
3 Fails to parse questions in randomA.irl
3 Does not report socket errors (e.g., randomB.irl)

Operation 17

2 Crashes on certain responses
8 Random.irl: 0, 3, 5, 6 (explain four ++ errors)
2 Random.irl: 1 (explain one ++ error)
3 Random.irl: 7 (explain one ++ error)

Report 25

12 Random.irl: 4 (explain three ++ errors)

Additional deductions are possible for memory leaks and poor code structure.

Total points: ________________

	1. Purpose
	2. Description
	2.1. Code (75 pts)
	2.2. Report (25 pts)
	2.3. Overview
	2.4. Packet Loss
	2.5. Header Caveats
	2.6. Reading Raw Buffers

